Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dex dàng chứng minh \(\Delta BID\infty BHA\left(g-g\right)\Rightarrow\frac{ID}{AH}=\frac{BD}{AB}\)
mà AD là phân giác góc BAC =>\(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{AB+AC}\)
=>\(\frac{DI}{AH}=\frac{BC}{AB+AC}\left(ĐPCM\right)\)
b) cái ý này t chỉ bt dùng cách lớp 9 thôi, nhưng nếu bạn muốn xem lg kiểu lớp 9 thì xem bài 46 nâng cao phát triến toán 9 tập 1
( mà đề bài sai hay sao ý, phải là =(AB/BD)^2 chứ nhỉ !!
c)t nghĩ áp dụng câu b
^_^
1/
\(A=a^3+a^2-b^3+b^2+ab-3a^2b+3ab^2-3ab\)
\(A=\left(a^3-3a^2b+3ab^2-b^3\right)+\left(a^2-2ab+b^2\right)=\left(a-b\right)^3+\left(a-b\right)^2=7^3+7^2=392\)
1.áp dụng pi-ta-go ta có : \(AC^2=BC^2-AB^2\Rightarrow AC=\sqrt{100-36}\)\(=8\)
MH là đường trung bình tam giác ABC nên MH=1/2 AB = 3cm
2.Có H là trung điểm MD vì M đối xứng với D qua H
H là trung điểm AC (giả thiết)
tứ giác ANCD có 2 đường chéo giao nhau tại trung điểm mỗi đường nên là hình b hành
3. chưa nghĩ ra
4 tương tự bà trên mk giải rồi bạn tư duy nhé !
3 nè
xét tam giác KHC và tam giác GHA có HC=HA . góc CHK=góc AHG đối đỉnh . góc KCH=góc GAH (so le trong)
nên tam giác KHC = GHA => KC=AG .lại có DC=AM suy ra \(\frac{CK}{CD}=\frac{AG}{AM}\)mà G là trọng tâm tam giác ABC nên AG/AM=2/3
=> CK/CD =2/3 (điều phải cm)
p là j vậy bạn