Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó:ΔABD\(\sim\)ΔACE
Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
\(\widehat{DAE}\) chung
Do đó:ΔADE\(\sim\)ΔABC
Suy ra: \(\widehat{ADE}=\widehat{ABC}\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạngvới ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB và AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng vói ΔABC
=>góc ADE=góc ABC
d: ΔADE đồng dạng với ΔABC
=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{ADE}=30\left(cm^2\right)\)
a) Xét tam giác ADB vuông tại D
tam giác AEC vuông tại E
có A góc chung
=>tam giác ADB đồng dạng tam giác AEC (g-g)
Gọi G là trọng tâm của tam giác ABC, khi đó ta có:
GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)
GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2
=> ▲BGC vuông tại G hay BD vuông góc CE
Gọi G là trọng tâm của tam giác ABC, khi đó ta có:
GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)
GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2
=> ▲BGC vuông tại G hay BD vuông góc CE
a: Xét ΔADB vuông tại D và ΔACE vuông tại E có
góc DAB chung
Do đó: ΔADB\(\sim\)ΔAEC
Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC và \(AD\cdot AC=AB\cdot AE\)
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
Do đó: ΔADE\(\sim\)ΔABC
Suy ra: \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\left(\cos60^0\right)^2=\dfrac{1}{4}\)
nên \(S_{ABC}=2016\left(cm^2\right)\)