Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , b tự lm nha ( dễ mà )
c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BC
⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI
Và MM là trung điểm của HKHK
⇒DM⇒DM là đường trung bình ΔHIKΔHIK
⇒DM∥IK⇒DM∥IK
⇒BC∥IK⇒BC∥IK
⇒BCKI⇒BCKI là hình thang
ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến
⇒ΔCHI⇒ΔCHI cân đỉnh CC
⇒CI=CH⇒CI=CH (*)
Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)
Từ (*) và (**) suy ra CI=BKCI=BK
Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK
Suy ra BCIKBCIK là hình thang cân.
Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)
⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC
...
a: Xét tứ giác BHCK có
M là trung điểm chung của BC và HK
=>BHCK là hình bình hành
b: Xét tứ giác AFHE có
\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)
=>AFHE là tứ giác nội tiếp đường tròn đường kính AH
=>AFHE nội tiếp (I)
=>IF=IE
=>I nằm trên đường trung trực của FE(1)
Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp đường tròn đường kính BC
=>BFEC nội tiếp (M)
=>MF=ME
=>M nằm trên đường trung trực của FE(2)
Từ (1) và (2) suy ra IM là đường trung trực của FE
=>IM\(\perp\)FE
Xét ΔHAK có
I,M lần lượt là trung điểm của HA,HK
=>IM là đường trung bình của ΔHAK
=>IM//AK
Ta có: IM//AK
IM\(\perp\)FE
Do đó: FE\(\perp\)AK
Hình bạn tự vẽ nhé. EF cắt AH tại L.
Xét tam giác AIM vuông tại I(MI vuông góc AB) có HF//IM ( H là trực tâm nên HF vuông góc AB, từ vuông góc đến song song >> HF//IM) >> \(\frac{AF}{AI}=\frac{AH}{AM}\left(Talet\right)\)
CMTT >> \(\frac{AE}{AK}=\frac{AH}{AM}\left(Talet\right)\)>> \(\frac{AF}{AI}=\frac{AE}{AK}\). Theo Talet đảo có EF // IK.
Xét tam giác AIK có EF // IK >> AEF đồng dạng AIK ( bạn tự cm, quá dễ) >> góc AFE = góc AIK và góc AEF = góc AKI
Xét tam giác AFL và tam giác AID : chung góc A và AFL = AID (cmt) >> AFL đồng dạng AID >> ALF = ADI đồng vị >> ID // EL
CMTT thì LE // DK. Có E,L,F thẳng hàng nên theo tiên đề Euclid suy ra I,D,K thẳng hàng.
bạn ơi, AFL=AID đang cần chứng minh mà, AFL=AIK mới đúng. nếu AFL=AID=AIK thì I,D,K thẳng hàng rồi.