Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé
a/ xét tam giác AEC và tam giác AFB ta có :
A là góc chung
góc AEC = góc AFB (=90 độ )
=> tam giác AEC ~ tam giác AFB (g.g)
b) vì tam giác AEC ~ tam giác AFB ( cmt)
=> AE/AF=AC/AB => AE*AB = AF*AC
c) xét tam giác BDH và tam giác BFC ta có :
góc B chung
góc BDH = góc BFC (=90 độ)
=> tam giác BDH ~ tam giác BFC (g.g)
=>BH/BC=BD/BF => BH*BF=BC*BD (1)
xét tam giác CHD và tam giác CBE ta có :
C là góc chung
góc CDH = góc CEB (=90 độ )
=> tam giác CHD ~ tam giác CBE (g.g)
=> CH/CB= CD/CE => CH*CE=CB*CD (2)
từ (1) và (2) => BH.BF +CH.CE= BC.BD+ CB.CD = BC ( BD +CD)= BC.BC= BC2
=> BH.BF+CH.CE=BC2 (đpcm)
d) xét tam giác AEH và tam giác AMD ta có :
A là góc chung
góc AEH = góc AMD (= 90 độ )
=> t/g AEH ~t/g AMD (g.g)=> AE/AM=AH/AD (3)
xét t/ g AFH và AND ta có :
A là góc chung
góc AFH = góc AND (=90 độ )
=> t/g AFH ~ t/g AND (g.g) => AF/AN=AH/AD (4)
từ (3) và (4) => AE/AM=AF/AN
=> EF // MN hay MN//EF ( định lý Ta - lét đảo )
a: Xet ΔAFB vuông tại F và ΔAEC vuông tại E có
góc A chung
=>ΔAFB đồng dạng với ΔAEC
b: ΔAFB đồng dạng với ΔAEC
=>AF/AE=AB/AC
=>AF*AC=AB*AE
=>AF/AB=AE/AC
=>ΔAFE đồng dạng với ΔABC
c: Xét ΔBDH vuông tại D và ΔBFC vuông tại Fco
góc DBH chung
=>ΔBDH đồng dạng với ΔBFC
Khó king khủng em mới học lớp 4 thôi để em ăn cháo sen bát bảo minh trung làm được ngay nhưng phải làm thêm tí bò húc với lại rượu đế ! la la la la la ta là một con người
Mấy câu trên bạn lm được rồi mimhf sẽ không giải nữa mà chỉ làm câu d thôi.
Ta có : các điểm D; E; F lần lượt nằm trên các cạnh AC; AB; BC
Mà 3 đoạn thẳng AF; BD; CE đồng quy tại H
Áp dụng định lý Ceeva vào tam giác ABC ta được:
EA/EB . FB/FC . DC/DA = 1
a: XétΔAEC vuông tại E và ΔAFB vuông tại F có
\(\widehat{EAC}\) chung
Do đó: ΔAEC~ΔAFB
b: ΔAEC~ΔAFB
=>\(\dfrac{AE}{AF}=\dfrac{AC}{AB}\)
=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
\(\widehat{FAE}\) chung
Do đó: ΔAEF~ΔACB
=>\(\widehat{AEF}=\widehat{ACB}\)
c: Xét ΔABC có
BF,CE là các đường cao
BF cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại D
Xét ΔBDH vuông tại D và ΔBFC vuông tại F có
\(\widehat{DBH}\) chung
Do đó: ΔBDH~ΔBFC
=>\(\dfrac{BD}{BF}=\dfrac{BH}{BC}\)
=>\(BH\cdot BF=BD\cdot BC\)
Xét ΔCDH vuông tại D và ΔCEB vuông tại E có
\(\widehat{DCH}\) chung
Do đó: ΔCDH~ΔCEB
=>\(\dfrac{CD}{CE}=\dfrac{CH}{CB}\)
=>\(CH\cdot CE=CD\cdot CB\)
\(BH\cdot BF+CH\cdot CE\)
\(=BD\cdot BC+CD\cdot BC=BC\left(BD+CD\right)=BC^2\)
Cần gấp sos