Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=180^0\)
nên ADHE là tứ giác nội tiếp
hay A,D,H,E cùng thuộc một đường tròn
a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=180^0\)
Do đó: ADHE là tứ giác nội tiếp
hay A,D,H,E cùng thuộc 1 đường tròn
Sửa đề: B,D,C,E
BD\(\perp\)AC
=>\(\widehat{BDC}=\widehat{ADB}=90^0\)
CE\(\perp\)AB
=>\(\widehat{AEC}=\widehat{BEC}=90^0\)
Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp
=>B,E,D,C cùng thuộc một đường tròn
a: Xét tứ giác FNIM có
\(\widehat{FNI}+\widehat{FMI}=180^0\)
nên FNIM là tứ giác nội tiếp
hay F,N,I,M cùng thuộc 1 đường tròn
b: Xét tứ giác DNME có
\(\widehat{DNE}=\widehat{DME}\left(=90^0\right)\)
nên DNME là tứ giác nội tiếp
hay D,N,M,E cùng thuộc 1 đường tròn
a: Xét tứ giác BCDE có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BCDE là tứ giác nội tiếp
hay B,C,D,E cùng thuộc một đường tròn
a: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp
Tâm là trung điểm của BC
Bán kính là \(\dfrac{BC}{2}=\dfrac{a}{2}\)
a, ta có BM , CN là các đường cao \(=>\angle\left(BMC\right)=\angle\left(CNB\right)=90^o\)(1)
mà N,M là 2 đỉnh liên tiếp của tứ giác BNMC
\(=>\) tứ giác BMNC nội tiếp đường tròn
=>4 điểm B,M,N,C cùng thuộc 1 đường tròn
b, có AD là đường kính (O) =>tam giác ACD nội tiếp (O)
\(=>\angle\left(ACD\right)=90^o\)(2)
từ(1)(2) \(=>BM//CD=>BH//CD\left(3\right)\)
tương tự =>tam giác ABD nội tiếp (O)\(=>\angle\left(ABD\right)=90^o\left(4\right)\)
từ(1)(4) \(=>BD//CN< =>CH//BD\left(5\right)\)
từ(3)(5)=>BHCD là hình bình hành
a: góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
O là trung điểm của AH
b:
XetΔACB có
BD,CE là đường cao
BD căt CE tại H
=>H là trực tâm
=>AH vuông góc BC
=>K là trung điểm của CB
góc ODK=góc ODH+góc KDH
=góc BHK+góc KBH=90 độ
=>KD là tiếp tuyến của (O)
a: Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=180^0\)
nên AEHD là tứ giác nội tiếp
hay A,E,H,D cùng thuộc 1 đường tròn
b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}\)
nên BEDC là tứ giác nội tiếp
hay B,E,D,C cùng thuộc 1 đường tròn