K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

Gợi ý: Gọi , chứng minh được AK ^ BC.

Áp dụng cách làm tương tự 4A suy ra ĐPCM

31 tháng 3 2023

Trã lời dùm

17 tháng 5 2023

mình cần gâps huhu

 

a: Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>H,M,K thẳng hàng

b: BHCK là hình thoi khi BH=HC

=>AB=AC

6 tháng 5 2018

a)  Xét \(\Delta ABD\)và   \(\Delta ACE\)có:

    \(\widehat{ADB}=\widehat{AEC}=90^0\)

    \(\widehat{BAC}\) chung

suy ra:   \(\Delta ABD~\Delta ACE\)  (g.g)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AD}{AE}\)

\(\Rightarrow\)\(AB.AE=AC.AD\) 

b)   \(\frac{AB}{AC}=\frac{AD}{AE}\) (câu a)

\(\Rightarrow\)\(\frac{AE}{AC}=\frac{AD}{AB}\)

Xét  \(\Delta AED\)và    \(\Delta ACB\)có:

     \(\frac{AE}{AC}=\frac{AD}{AB}\) (cmt)

     \(\widehat{EAD}\) chung

suy ra:   \(\Delta AED~\Delta ACB\)  (g.g)

c)  Kẻ  \(HK\perp BC\) \(\left(K\in BC\right)\)

C/m:    \(\Delta BKH~\Delta BDC\)(g.g)  \(\Rightarrow\) \(\frac{BK}{BD}=\frac{BH}{BC}\)\(\Rightarrow\)\(BH.BD=BK.BC\) (1)

           \(\Delta CKH~\Delta CEB\)(g.g)   \(\Rightarrow\)\(\frac{CK}{CE}=\frac{CH}{CB}\)\(\Rightarrow\)\(CE.CH=CK.BC\) (2)

Lấy (1) + (2) theo vế ta được:   \(BH.BD+CE.CH=BK.BC+CK.BC=BC^2\) (đpcm)

Bài 10:

a) Xét ΔABE vuông tại E và ΔCBD vuông tại D có 

\(\widehat{DBC}\) chung

Do đó: ΔABE\(\sim\)ΔCBD(g-g)

b) Xét ΔHDA vuông tại D và ΔHEC vuông tại E có 

\(\widehat{AHD}=\widehat{CHE}\)(hai góc đối đỉnh)

Do đó: ΔHDA\(\sim\)ΔHEC(g-g)

Suy ra: \(\dfrac{HD}{HE}=\dfrac{HA}{HC}\)

hay \(HD\cdot HC=HE\cdot HA\)

Bài 11: 

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{FAC}\) chung

Do đó: ΔABE\(\sim\)ΔACF(g-g)

b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔFHB\(\sim\)ΔEHC(g-g)

Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

hay \(HE\cdot HB=HF\cdot HC\)

c) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Suy ra: \(\widehat{AEF}=\widehat{ABC}\)

18 tháng 4 2015

ai biết thì chỉ giùm nha ok :)