Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ta có:BD\(\perp\)AB
CH\(\perp\)AB
Do đó: BD//CH
Ta có: CD\(\perp\)CA
BH\(\perp\)CA
Do đó: CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: ta có: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
=>H,M,D thẳng hàng
c: Ta có: ΔABD vuông tại B
mà BI là đường trung tuyến
nên \(BI=\dfrac{AD}{2}\left(1\right)\)
Ta có: ΔACD vuông tại C
mà CI là đường trung tuyến
nên \(CI=\dfrac{AD}{2}\left(2\right)\)
Từ (1) và (2) suy ra BI=CI
d: Để BDCH là hình thoi thì HB=HC
=>ΔHBC cân tại H
=>\(\widehat{HBC}=\widehat{HCB}\)
Ta có: \(\widehat{HBC}+\widehat{ACB}=90^0\)(BH\(\perp\)AC)
\(\widehat{HCB}+\widehat{ABC}=90^0\)(CH\(\perp\)AB)
mà \(\widehat{HBC}=\widehat{HCB}\)
nên \(\widehat{ABC}=\widehat{ACB}\)
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
1: Xét ΔABC có BE,CF là các đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC
Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hình bình hành
2: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
=>M là trung điểm của HD
Xét ΔDAH có
M,O lần lượt là trung điểm của DH,DA
nên MO là đường trung bình
=>AH=2MO
Sửa đề: Từ C,B kẻ các đường thẳng vuông góc với AC,AB cắt nhau tại K
a: CK vuông góc AC
BH vuông góc AC
Do đó: CK//BH
BK vuông góc AB
CH vuông góc AB
Do đó: BK//CH
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
b: BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HK
=>H,M,K thẳng hàng
a: Xét tứ giác BHCD có
BH//CD
BD//CH
DO đó: BHCD là hình bình hành
a: Xét tứ giác BDCH có
BD//CH
BH//CD
Do đó: BDCH là hình bình hành
a/
\(CH\perp AB;BE\perp AB\) => CH//BE
\(BH\perp AC;CE\perp AC\)=> BH//CE
=> BHCE là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
b/
Nối H với E cắt BC tại D' => D'B=D'C ( Trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
=> D' là trung điểm của BC mà D cũng là trung điểm BC nên \(D\equiv D'\) => H, D, E thẳng hàng
c/
Xét tg AHE có
KA=KE (giả thiết)
DH=DE (Trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
=> DK là đường trung bình của tg AHE \(\Rightarrow DK=\frac{1}{2}AH\)
d/
Ta có
Q và N đều nhìn BC dưới 1 góc vuông => Q và N thuộc đường tròn đường kính BC => BQNC là tứ giác nội tiếp
\(\Rightarrow\widehat{QNB}=\widehat{QCB}\) (Góc nội tiếp cùng chắn cung BQ) (1)
B và C đều nhìn AE dưới 1 góc vuông => B và C thuộc đường tròn đường kính AE => ABEC là tứ giác nội tiếp
\(\Rightarrow\widehat{EAC}=\widehat{EBC}\)(Góc nội tiếp cùng chắn cung EC) (2)
\(\widehat{QCB}=\widehat{EBC}\) (góc so le trong) (3)
Từ (1) (2) và (3) \(\Rightarrow\widehat{QNB}=\widehat{EAC}\)
Mà \(\widehat{QNB}+\widehat{ANI}=90^o\Rightarrow\widehat{EAC}+\widehat{ANI}=90^o\)
Xét tg ANI có
\(\widehat{AIN}=180^o-\left(\widehat{EAC}+ANI\right)=180^o-90^o=90^o\)
\(\Rightarrow AE\perp QN\)