Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC
=>HE/HD=HB/HC
=>HE*HC=HB*HD
b: Xét ΔBAC có
BD,CE là đường cao
BD cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC tại F
Xét ΔBFH và ΔBDC có
góc BFH=góc BDC
góc FBH chung
=>ΔBFH đồng dạng với ΔBDC
=>BF/BD=BH/BC
=>BF*BC=BD*BH
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng vơi ΔABC
b: Xet ΔHEB vuông tại E và ΔHDC vuông tại D co
góc EHB=góc DHC
=>ΔHEB đồng dạng vơi ΔHDC
=>HE/HD=HB/HC
=>HE*HC=HB*HD
Xét tứ giác BHCK co
BH//CK
BK//CH
=>BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>H,M,K thẳng hàng
ΔAED đồg dạng với ΔACB
=>góc AED=góc ACB
d: Xét ΔBEC vuông tại E và ΔBOA vuông tại O có
góc EBC chung
=>ΔBEC đồng dạng với ΔBOA
=>BE/BO=BC/BA
=>BE*BA=BO*BC
Xét ΔCDB vuông tại D và ΔCOA vuông tại O có
góc OCA chung
=>ΔCDB đồng dạng với ΔCOA
=>CD/CO=CB/CA
=>CO*CB=CD*CA
=>BE*BA+CD*CA=BC^2
a) Xét ΔKHB vuông tại K và ΔIHC vuông tại I có
\(\widehat{KHB}=\widehat{IHC}\)(hai góc đối đỉnh)
Do đó: ΔKHB\(\sim\)ΔIHC(g-g)
mk chỉnh lại đề: kẻ các đường cao AH và BK cắt nhau tại I
a) Xét \(\Delta BKC\) và \(\Delta AHC\)có:
\(\widehat{BKC}=\widehat{AHC}=90^0\)
\(\widehat{C}\) chung
suy ra: \(\Delta BKC~\Delta AHC\)
b) \(\Delta BKC~\Delta AHC\)
\(\Rightarrow\)\(\frac{KC}{HC}=\frac{BC}{AC}\)
\(\Rightarrow\)\(\frac{KC}{BC}=\frac{HC}{AC}\)
Xét \(\Delta HKC\)và \(\Delta ABC\) có:
\(\frac{KC}{BC}=\frac{HC}{AC}\) (cmt)
\(\widehat{C}\) chung
suy ra: \(\Delta HKC~\Delta ABC\) (c.g.c)
Hình thì bạn tự vẽ nhé
a) Xét tam giác AHC và tam giác BDC có:
góc C chung
góc AHC = góc BDC (=90 độ)
=> Tam giác AHC đồng dạng với tam giác BDC (g.g)
b) Xét tam giác ADE và tam giác BHE có:
góc ADE = góc BHE (=90 độ)
góc AED = góc BEH ( vì 2 góc này đối đỉnh)
=> Tam giác ADE đồng dạng với tam giác BHE (g.g)
=> AE/BE=DE/HE => AE.HE=BE.DE (đpcm)