Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
a. Xét △ AFC và △ AEB có:
\(\widehat{BAC}\) chung
\(\widehat{AFC}=\widehat{AEB}=90^0\)
⇒ △AFC đồng dạng với △ AEB(g.g)
⇒ \(\frac{AF}{AE}=\frac{AC}{AB}\)
⇒ \(AB.AF=AE.AC\)
\(\frac{AF}{AE}=\frac{AC}{AB}\Rightarrow\frac{AF}{AC}=\frac{AE}{AB}\)
Xét △ AEF và △ ABC có :
\(\widehat{BAC}\) chung
\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)
⇒△ AEF đồng dạng với △ ABC (c.g.c)
Mấy câu kia bạn tự làm nốt đi nhá.
a: Mình chỉ nêu ra thôi, chứng minh thì chắc chắn đều theo trường hợp g-g nha bạn
ΔADH đồng dạng vơi ΔAFB
ΔAEH đồng dạng với ΔAFC
ΔBFH đồg dạng với ΔBEC
ΔAFB đồng dạng vơi ΔBDC
ΔBEC đồng dạng với ΔAFC
ΔBAE đồng dạng với ΔCAD
ΔAHD đồng dạng với ΔCHF
ΔCHE đồng dạng với ΔBHD
ΔAHE đồng dạng vơi ΔBHF
ΔADE đồng dạng với ΔACB
ΔBDF đồng dạng với ΔBCA
ΔCFE đồng dạng với ΔCAB
a: Xét ΔAHE vuông tại E và ΔBHD vuông tại D có
góc AHE=góc BHD
=>ΔAHE đồng dạng với ΔBHD
b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc BAE chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
c: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc EAF chung
=>ΔAEF đồng dạng với ΔABC
=>S AEF/S ABC=(AE/AB)^2=9/25
a: Xét ΔBIP vuông tại I và ΔBDA vuông tại D có
\(\widehat{IBP}\) chung
Do đó: ΔBIP đồng dạng với ΔBDA
=>\(\dfrac{BI}{BD}=\dfrac{BP}{BA}\)
=>\(BI\cdot BA=BD\cdot BP\)
b: ta có: \(\dfrac{BI}{BD}=\dfrac{BP}{BA}\)
=>\(\dfrac{BI}{BP}=\dfrac{BD}{BA}\)
=>\(\dfrac{BP}{BI}=\dfrac{BA}{BD}\)
Xét ΔBPA và ΔBID có
\(\dfrac{BP}{BI}=\dfrac{BA}{BD}\)
\(\widehat{PBA}\) chung
Do đó: ΔBPA đồng dạng với ΔBID