K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB∼ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)

4 tháng 5 2018

T.i.c.k cho mình rồi mk cũng t... cho bạn

4 tháng 5 2018

Là s bn??

26 tháng 4 2018

a)  Xét  \(\Delta AEB\) và   \(\Delta AFC\) có:

     \(\widehat{AEB}=\widehat{AFC}=90^0\)

     \(\widehat{A}\)  chung

suy ra:   \(\Delta AEB~\Delta AFC\) (g.g)

\(\Rightarrow\)\(\frac{AE}{AF}=\frac{AB}{AC}\) \(\Rightarrow\)\(AF.AB=AE.AC\)

b)   \(\frac{AE}{AF}=\frac{AB}{AC}\)\(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)

Xét  \(\Delta AEF\)và   \(\Delta ABC\) có:

           \(\frac{AE}{AB}=\frac{AF}{AC}\)  (cmt)

           \(\widehat{A}\) chung

suy ra:   \(\Delta AEF~\Delta ABC\) (c.g.c)

\(\Rightarrow\)   \(\widehat{AEF}=\widehat{ABC}\)

c)   \(\Delta AEF~\Delta ABC\)

\(\Rightarrow\)\(\frac{S_{ABC}}{S_{AEF}}=\left(\frac{AB}{AE}\right)^2=\left(\frac{3}{6}\right)^2=\frac{1}{4}\)

\(\Rightarrow\)\(S_{ABC}=4S_{AEF}\)

29 tháng 3 2022

Gửi các bạn lời giải 1 bài tương tự

https://youtu.be/mjiZSkISHgA

15 tháng 3 2016

( AF/FB ).(BD/DC).(CE/EA)= AF/AE.  BD/FB . CE/DC

sau đó dựa vào các tam giác AEB, BFD,DCE cùng đồng dạng với tam giác ABC

17 tháng 4 2016

 Hướng dẫn làm:
(a) Chứng minh ΔABE∼ΔACF→AEAF=ABAC→ΔAEF∼ΔABC
(b) Chứng minh BH.BE=BD.BC và CH.CF=CD.BC, từ đó suy ra điều phải chứng minh.
(c) Chứng minh ΔBHD∼ΔADC, từ đó ta có tỉ số BDHD=ADDC↔AD.HD=BD.DC
Đặt BD=x thì DC=BC−x
Khi đó 4AD.HD=x(BC−x)=−4x2+4BC.x−BC2+BC2=−(2x−BC)2+BC2≤BC2
(d) Chứng minh AKIˆ=AEIˆ
Sau đó chứng minh ΔEIA∼ΔEQH và suy ra AEIˆ=HEQˆ=HKQˆ

Đúng nha nguyễn ngọc khánh vy

17 tháng 4 2016

(a) Chứng minh ΔABE∼ΔACF→AEAF=ABAC→ΔAEF∼ΔABC
(b) Chứng minh BH.BE=BD.BC và CH.CF=CD.BC, từ đó suy ra điều phải chứng minh.
(c) Chứng minh ΔBHD∼ΔADC, từ đó ta có tỉ số BDHD=ADDC↔AD.HD=BD.DC
Đặt BD=x thì DC=BC−x
Khi đó 4AD.HD=x(BC−x)=−4x2+4BC.x−BC2+BC2=−(2x−BC)2+BC2≤BC2
(d) Chứng minh AKIˆ=AEIˆ
Sau đó chứng minh ΔEIA∼ΔEQH và suy ra AEIˆ=HEQˆ=HKQˆ

Mình đúng nha nguyễn ngọc khánh vy

30 tháng 4 2021

#muon roi ma sao con

A B C D F E G

a, Xét tam giác BEF và tam giác DEA ta có : 

^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )

\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1) 

Vậy tam giác BEF ~ tam giác DEA ( c.g.c )

b, Xét tam giác EGD và tam giác EAB ta có : 

^GED = ^EAB ( đ.đ )

\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét )  (2) 

Vậy tam giác EGD ~ tam giác EAB ( c.g.c )

\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )

c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 ) 

Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)

30 tháng 4 2021

A B C D E F H 3 6

a, Xét tam giác AEB và tam giác AFC ta có 

^AEB = ^AEC = 900

^A _ chung 

Vậy tam giác AEB ~ tam giác AFC ( g.g )

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc A chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

b: AE/AF=AB/AC

=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ABC

c: ΔAEF đồng dạng với ΔABC

=>\(\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{1}{4}\)

=>\(S_{ABC}=4\cdot S_{AEF}\)

16 tháng 5 2018

a) Xét ΔAEB và ΔAFC có:

∠AEB = ∠AFC = 90o (gt)

∠A chung

Vậy ΔAEB ∼ ΔAFC (g.g)

b) Xét ΔAEF và ΔABC có

∠A chung

AF.AB = AE.AC (Cmt)

⇒ ΔAEF ∼ ΔABC (c.g.c)

⇒ ∠AEF = ∠ABC

c) ΔAEF ∼ ΔABC (cmt)

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc A chung

=>ΔABE đồng dạng với ΔACF

b: ΔABE đồng dạng với ΔACF

=>AE/AF=AB/AC

=>AE/AB=AF/AC và AE*AC=AB*AF

Xét ΔAEF và ΔABC có

AE/AB=AF/AC
góc FAE chung

=>ΔAEF đồng dạng với ΔABC