K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

\(DM\)\(\perp\)\(AC\)

\(BE\)\(\perp\)\(AC\)

suy ra:     \(DM//BE\)

\(\Delta CBE\)có    \(DM//BE\)  áp dụng định lý Ta-lét ta có:

          \(\frac{CD}{BD}=\frac{CM}{EM}\)

\(\Delta CBH\)   có    \(DK//BH\)theo hệ quả định lý Ta-lét ta có:

            \(\frac{DK}{BH}=\frac{CK}{CH}\)   (1)

\(\Delta CEH\) có    \(KM//EH\)  theo hệ quả định lý Ta-lét ta có:

           \(\frac{KM}{EH}=\frac{CK}{CH}\)   (2)

Từ (1) và (2) suy ra:      \(\frac{DK}{BH}=\frac{KM}{EH}\)

HAY      \(\frac{BH}{EH}=\frac{DK}{KM}\)

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao

20 tháng 1 2020

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(ABD\)\(ACE\) có:

\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)

\(\widehat{A}\) chung

=> \(\Delta ABD\sim ACE\left(g-g\right).\)

Chúc bạn học tốt!

a: Xét tứ giác BDCE có

BD//CE
BE//CD
DO đó: BDCE là hình bình hành

b: Ta có: BDCE là hình bình hành

nen Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của ED

20 tháng 2 2020

Đề sai nhé bạn

20 tháng 2 2020

A B C F E I H M D

mk chỉ giải 2 câu thoy nha!!!

xét tứ giác BHCD có BC\(\cap\)HD tại M

màMB=MC,MH=MD=>△BMD=△HMC(c.g.c)=>BD=HC(1)

△BMH=△CMD(c.g.c)=>BH=CD(2)

từ (1) ,(2) =>BHCD là hbh

do H là giao của HF và CE =>HϵCF=>HF//BD(do CH//BD)

=>\(\widehat{F}=\widehat{B}=90^o\)=>△ABD vuông tại B