Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(ABD\) và \(ACE\) có:
\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)
\(\widehat{A}\) chung
=> \(\Delta ABD\sim ACE\left(g-g\right).\)
Chúc bạn học tốt!
a: Xét tứ giác BDCE có
BD//CE
BE//CD
DO đó: BDCE là hình bình hành
b: Ta có: BDCE là hình bình hành
nen Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của ED
A B C F E I H M D
mk chỉ giải 2 câu thoy nha!!!
xét tứ giác BHCD có BC\(\cap\)HD tại M
màMB=MC,MH=MD=>△BMD=△HMC(c.g.c)=>BD=HC(1)
△BMH=△CMD(c.g.c)=>BH=CD(2)
từ (1) ,(2) =>BHCD là hbh
do H là giao của HF và CE =>HϵCF=>HF//BD(do CH//BD)
=>\(\widehat{F}=\widehat{B}=90^o\)=>△ABD vuông tại B
\(DM\)\(\perp\)\(AC\)
\(BE\)\(\perp\)\(AC\)
suy ra: \(DM//BE\)
\(\Delta CBE\)có \(DM//BE\) áp dụng định lý Ta-lét ta có:
\(\frac{CD}{BD}=\frac{CM}{EM}\)
\(\Delta CBH\) có \(DK//BH\)theo hệ quả định lý Ta-lét ta có:
\(\frac{DK}{BH}=\frac{CK}{CH}\) (1)
\(\Delta CEH\) có \(KM//EH\) theo hệ quả định lý Ta-lét ta có:
\(\frac{KM}{EH}=\frac{CK}{CH}\) (2)
Từ (1) và (2) suy ra: \(\frac{DK}{BH}=\frac{KM}{EH}\)
HAY \(\frac{BH}{EH}=\frac{DK}{KM}\)