Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn tự vẽ hinh nha
1)
Xét tam giác ABC có
hai đường cao BE và CD cắt nhau tại H nên H là trực tâm
do đó \(AH\perp BC\)
mà \(HM\perp BC\)
suy ra AH trùng với HM
vậy A; H; M thẳng hàng
b)
dễ chứng minh tam giác BHM đồng dạng với tam giác BCE \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BE}\Rightarrow BH\cdot BE=BC\cdot BM\left(1\right)\)
dễ chứng minh tam giác CHM đồng dạng với tam giác CBD \(\Rightarrow\frac{CH}{BC}=\frac{CM}{CD}\Rightarrow CH\cdot CD=CM\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BE+CH\cdot CD=BM\cdot BC+CM\cdot BC=\left(BM+CM\right)\cdot BC=BC\cdot BC=BC^2\)
2)
a)
Xét tam giác ABC và tam giác DEC
có \(\widehat{BAC}=\widehat{CDE}\)
\(\widehat{ACB}\)chung
nên tam giác ABC đồng dạng với tam giác DEC
\(\Rightarrow\frac{AB}{DE}=\frac{AC}{CD}\left(1\right)\)
b)
Xét tam giác ABC
có AD là đường phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\left(2\right)\)
Từ (1) và (2) suy ra
\(\frac{AB}{DE}=\frac{AB}{BD}\Rightarrow DE=BD\)

a, H là trực tâm của \(\Delta ABC\left(gt\right)\Rightarrow BH\perp AC,CH\perp AB\)
Mà \(CK\perp AC,BK\perp AB\left(gt\right)\)
\(\Rightarrow BH//CK,CH//BK\)
\(\Rightarrow BHCK\)là hình bình hành.
b, Hình bình hành BHCK có 2 đường chéo BC,HK cắt nhau tại O
\(\Rightarrow O\)là trung điểm của HK.
ON là đường trung bình của \(\Delta AHK\Rightarrow ON=\frac{1}{2}AH\Rightarrow AH=2ON\)
c, Tứ giác ABCK có: \(\widehat{BAC}+\widehat{ABK}+\widehat{ACK}+\widehat{BKC}=360^0\)
\(\Rightarrow60^0+90^0+90^0+\widehat{BKC}=360^0\Rightarrow\widehat{BKC}=150^0\)
BH//CK(gt) \(\Rightarrow\widehat{BKC}+\widehat{HCK}=180^0\)
\(\Rightarrow150^0+\widehat{HCK}=180^0\Rightarrow\widehat{HCK}=30^0\)
BHCK là hình bình hành (cmt) nên \(\hept{\begin{cases}\widehat{BHC}=\widehat{BKC}=150^0\\\widehat{HBK}=\widehat{HCK}=30^0\end{cases}}\) (tính chất hbh)
1: Xét tứgiác BHCK có
BH//CK
BK//CH
Do đó:BHCK là hình bình hành
2: Xét ΔHEA vuông tai E và ΔHDB vuông tại D có
góc EHA=góc DHB
Do đo: ΔHEA đồng dạng với ΔHDB
Suy ra: HE/HD=HA/HB
hay HE/HA=HD/HB
Xét ΔhED và ΔHAB có
HE/HA=HD/HB
góc EHD=góc AHB
Do đo: ΔHED đồng dạng với ΔHAB