Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: H và P đối xứng nhau qua BC
nên BC là đường trung trực của HP
Suy ra: D là trung điểm của HP
Xét ΔHPQ có
D là trung điểm của HP
M là trung điểm của HQ
Do đó: DM là đường trung bình của ΔHPQ
Suy ra: DM//PQ
hay PQ//BC
Xét tứ giác DMQP có DM//PQ
nên DMQP là hình thang
mà \(\widehat{PDM}=90^0\)
nên DMQP là hình thang vuông
a: Ta có: H và P đối xứng nhau qua BC
nên HP⊥BC tại D
và D là trung điểm của HP
Xét ΔHPQ có
D là trung điểm của HP
M là trung điểm của HQ
Do đó: DM là đường trung bình của ΔHPQ
Suy ra: PQ//BC
Hiểu rõ về BTS chỉ có thể là Army phải không chị Bangtan?Chỉ cần nhìn avatar đoán ra chủ nick là con gái vì số fan girl nhiều hơn fan boy.
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, Tiếng Việt và Ngữ Văn hoặc Tiếng Anh, và KHÔNG ĐƯA các câu hỏi linh tinh gây nhiễu diễn đàn. OLM có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
a) Tứ giác BHCkBHCk có 2 đường chéo BCBC và HKHK cắt nhau tại trung điểm MM của mỗi đường
⇒BHCK⇒BHCK là hình bình hành.
b) BHCKBHCK là hình bình hành ⇒BK∥HC⇒BK∥HC
Mà HC⊥ABHC⊥AB
⇒BK⊥AB⇒BK⊥AB (đpcm)
c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BCHD⊥BC,D∈BC
⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI
Và MM là trung điểm của HKHK
⇒DM⇒DM là đường trung bình ΔHIKΔHIK
⇒DM∥IK⇒DM∥IK
⇒BC∥IK⇒BC∥IK
⇒BCKI⇒BCKI là hình thang
ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến
⇒ΔCHI⇒ΔCHI cân đỉnh CC
⇒CI=CH⇒CI=CH (*)
Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)
Từ (*) và (**) suy ra CI=BKCI=BK
Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK
Suy ra BCIKBCIK là hình thang cân.
Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)
⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC
...
a) ta có: H đối xứng với P qua BC mà D là giao điểm của AH và BC
suy ra D là trung điểm HP.
lại có: Q đối xứng với H qua M => M là trung điểm QH
suy ra: DM là đường trung bình tam giác HPQ
=> DM // PQ hay BC // PQ.
=> DMQP là hình thang.
lại có: \(\widehat{MDP}=90^o\)(do AD\(\perp\)BC)
=> DNQP là hình thang vuông.
b) tứ giác HCQB có M là trung điểm BC (gt)
M là trung điểm HQ (cmt)
=> HCQB là hình bình hành.
Kéo dài CH cắt AB tại F.
Ta có H là trực tâm tam giác ABC => AH\(\perp\)AB hay AF\(\perp\)AB.
có: HCQB là hình bình hành => \(\widehat{BCQ}=\widehat{EBC}\)(slt) và \(\widehat{CBQ}=\widehat{FCB}\)(slt)
\(\widehat{ACQ}=\widehat{ACB}+\widehat{BCQ}=\widehat{ACB}+\widehat{EBC}=90^o\)(tam giác BCE vuông tại E)
\(\widehat{ABQ}=\widehat{ABC}+\widehat{CBQ}=\widehat{ABC}+\widehat{FCB}=90^o\)(tam giác FCB vuông tại F)
c) gọi N là giao điểm của ON và AC => ON vuông góc AC tại N.
lại có tam giác AOC cân tại O (O là giao điểm các trung trực của tam giác ABC)
=> tam giác AOC cân tại O có đường cao ON đồng thời là đường trung tuyến ứng với cạnh AC
=> N là trung điểm AC
mà ON // CQ (cùng vuông góc với AC) => O là trung điểm AQ (định lí đường trung bình trong tam giác)
=> AO = OQ (1)
Có OM\(\perp\)BC mà BC // PQ => \(OM\perp PQ\)
gọi K là trung điểm PQ, ta có \(DM=\frac{1}{2}PQ=PK=KQ\)(do DM là đường trung bình tam giác HPQ)
=> 3 điểm O,M,K thẳng hàng.
Tam giác OPQ có đường cao OK đồng thời là đường trung tuyến => tam giác OPQ cân tại O => OP = OQ (2)
lại có: OA = OB = OC (O là giao điểm 3 trung trực tam giác ABC) (3)
từ (1), (2) và (3) => OA = OB = OC = OP = OQ
=> O cách đều 5 điểm A,B,C,P,Q.
Bạn ơi cho mình sửa xíu ạ, mình có viết nhầm vài chỗ :D
câu a) dòng thứ 8, DMQP chứ không phải là DNQP nhé.
câu b) dòng thứ 5, "\(AH\perp AB\)hay \(AF\perp AB\)" sửa lại thành "\(CH\perp AB\)hay \(CF\perp AB\)"