K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2020

a) +) Ta có \(\Delta ABE\) vuông tại E và \(\Delta ACF\) vuông tại F ( vì BE và CF là hai đường cao của ∆ABC)  

\(\Rightarrow cosBAC=\frac{AE}{AB}=\frac{AF}{AC}\Rightarrow AE.AC=AF.AB\)

   +) \(\Delta ADC\) vuông tại D có DK là đường cao  \(\Rightarrow\)AD2 = AK.AC

 Lại có \(\Delta ADB\) vuông tại D có DI là đường cao \(\Rightarrow\) AD2 = AI.AB

 Suy ra: AI.AB = AK. AC 

b) Ta có \(\Delta ADB\) vuông tại D \(\Rightarrow sinABC=\frac{AD}{AB}\) 

Lại có \(\Delta CBE\) vuông tại E và \(\Delta AHE\) vuông tại E

 mà \(\widehat{AHE}=\widehat{C}\)( cùng bù \(\widehat{DHE}\)) \(\Rightarrow sinABC=\frac{BE}{BC}=\frac{AE}{AH}\)

 \(\Rightarrow\frac{cosBAC}{sinABC.sinACB}=\frac{AE}{AB}:\left(\frac{AD}{AB}.\frac{AE}{AH}\right)=\frac{AE}{AB}.\frac{AB.AH}{AD.AE}=\frac{AH}{AD}\)

Vậy\(AD.cosBAC=AH.sinABC.sinACB\left(đpcm\right)\)