Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: góc ACB=góc ADB=1/2*sđ cung AB=90 độ
=>AC vuông góc CB và AD vuông góc DB
=>góc ECM=90 độ=góc EDM
=>CEDM nội tiếp
AC vuông góc CB
AD vuông góc DB
=>AD,BC là 2 đường cao của ΔAEB
=>M là trực tâm
=>AM vuông góc AB
ΔMDB vuông tại D nên ΔMDB nội tiếp đường tròn đường kính MB
=>BM là đường kính của (I)
=>góc MNB=90 độ
=>MN vuông góc AB
=>E,M,N thẳng hàng
b: AM vuông góc AB
=>góc ANM=90 độ
góc ANM+góc ACM=180 độ
=>ACMN nội tiếp
=>góc CAM=góc CNM=góc ADF
=>góc CAM=góc ADF
=>DF//AB
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
Bài 2:
ΔOBC cân tại O
mà OK là trung tuyến
nên OK vuông góc BC
Xét tứ giác CIOK có
góc CIO+góc CKO=180 độ
=>CIOK là tứ giác nội tiếp
Bài 3:
Xét tứ giác EAOM có
góc EAO+góc EMO=180 độ
=>EAOM làtứ giác nội tiếp
a, Vì HM là đường cao => \(HM\perp AB\)=> ^HMA = 900
Vì HN là đường cao => \(HN\perp AC\)=> ^HNA = 900
Xét tứ giác AMHN có :
^HMA + ^HNA = 900
mà ^HMA ; ^HNA đối nhau
Vậy tứ giác AMHN nội tiếp
b, Xét tam giác ABH vuông tại H, đường cao HM ta có :
\(AH^2=AM.AB\)(1)
Xét tam giác ACH vuông tại H, đường cao HN ta có :
\(AH^2=AN.AC\)(2)
từ (1) ; (2) suy ra : \(AM.AB=AN.AC\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)
Xét tam giác AMN và tam giác ACB ta có :
^A chung
\(\frac{AM}{AC}=\frac{AN}{AB}\)( cmt )
Vậy tam giác AMN ~ tam giác ACB ( c.g.c )