Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xet tam giac ABC ta co
M la trung diem AC (gt) N la trung diem AB (gt)-> MN la duong trung binh tam giac ABC-> MN//BC-> MNHP la hinh thang
cmtt NP la duong trung binh tam giac ABC-> NP=1/2 AC
xet tam giac AHC vuong tai H ta co
HM la duong trung tuyen ung voi canh huyen AC ( M la trung diem AC)--> HM=1/2 AC
ma NP=1/2AC (cmt )
nen NP=HM
Xét hình thang MNHP ta có NP=HM (cmt)-> MNHP là hình thang cân ( hình thang có 2 đường chéo bằng nhau)
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//MC và DE=MC
Xét tứ giác DMCE có
DE//MC
DE=MC
Do đó: DMCE là hình bình hành
c: ΔHAC vuông tại H có HE là trung tuyến
nên \(HE=\dfrac{1}{2}AC\)
mà \(MD=\dfrac{1}{2}AC\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
nên DHME là hình thang
mà HE=MD
nên DHME là hình thang cân
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
EA=EH
DA=DH
Do đó: ED là đường trung trực của AH
Bạn vẽ hình giúp mình nhé!
a. Cm: DFEH là hình thang cân
Xét tam giác AHC vuông tại H có HF là đường trung tuyến ứng với cạnh huyền.
\(\Rightarrow HF=\dfrac{AC}{2}\left(1\right)\)
Xét tam giác ABC có: \(\left\{{}\begin{matrix}AD=DB\\BE=EC\end{matrix}\right.\)
\(\Rightarrow\)DE là đường trung bình trong tam giác ABC
\(\Rightarrow\) \(DE=\dfrac{AC}{2}\left(2\right)\)
Lại có: Tam giác ABC có: \(\left\{{}\begin{matrix}AD=DB\\AF=FC\end{matrix}\right.\) \(\Rightarrow\)DF là đường trung bình của tam giác ABC
\(\Rightarrow\) DF//BC
\(\Rightarrow\) Tứ giác DFEH là hình thang (3)
Từ (1),(2), và (3) suy ra: DFEH là hình thang cân.
b. Cm: I là trung điểm của DF
Ta có: DFEH là hình thang cân
\(\Rightarrow DE=HF=\dfrac{AC}{2}=AF\)
Mà DE//AC \(\Rightarrow\) DE//AF
\(\Rightarrow\)Tứ giác AFED là hình bình hành
Mà \(I=DF\cap AE\)
\(\Rightarrow\) I là trung điểm của DF