Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của MP lấy điểm D sao cho MP=MD.
Ta có: \(\Delta\)MBP=\(\Delta\)MCD (c.g.c) => BP=CD (2 cạnh tương ứng)
Mà BP=CQ => CD=CQ => \(\Delta\)DCQ cân tại C => ^CQD= (1800-^DCQ)/2
=> ^MPB=^MDC (2 góc tương ứng) ở vị trí so le trong => AB//CD => ^DCQ=^IAK (Đồng vị)
M là trung điểm PD, N là trung điểm PQ => MN là đường trung bình của \(\Delta\)PDQ
=> MN//DQ hay IK//DQ => ^CQD=^AKI (Đồng vị)
=> \(\Delta\)AIK có: ^AKI= (1800-^IAK)/2 = (1800-^DCQ)/2 = ^CQD
=> Tam giác AIK cân tại A (đpcm)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
này cái bạn nguyễn xuân toàn kia bị gì thế ? họ là hỏi bài mà !
a: Xét tứ giác AECK có
AK//EC
AK=EC
Do đó: AECK là hình bình hành
a: Xét tứ giác APCQ có
N là trung điểm chung của AC và PQ
nên APCQ là hình bình hành
=>AQ//CP và AQ=CP
AQ=CP
CP=PB
Do đó: AQ=BP
AQ//CP
mà B thuộc tia đối của tia CP
nên AQ//BP
Xét tứ giác AQPB có
AQ//PB
AQ=PB
Do đó: AQPB là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC
=>MN//HP
Xét ΔABC có
M,P lần lượt là trung điểm của BA,BC
=>MP là đường trung bình
=>MP//AC và MP=AC/2(1)
ΔAHC vuông tại H
mà HN là đường trung tuyến
nên \(HN=\dfrac{AC}{2}\)(2)
Từ (1),(2) suy ra MP=HN
Xét tứ giác MNPH có
MN//PH
MP=HN
Do đó: MNPH là hình thang cân
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//AC
Xét tứ giác AMNC có MN//AC
nên AMNC là hình thang
b: Xét tứ giác MCEB có
N là trung điểm của đường chéo ME
N là trung điểm của đường chéo BC
Do đó: MECB là hình bình hành
Suy ra: MC//BE
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
hay MNCB là hình thang
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
hay MNCB là hình thang
Xét \(\Delta ABC\)có :
M là trung điểm AB
N là trung điểm AC
=> MN là đường trung bình
=> MN // BC , MN = \(\frac{BC}{2}\)
Xét \(\Delta AHC\)có :
HN là trung tuyến
=> HN = AN = NC = \(\frac{AC}{2}\)
Xét \(\Delta ABC\)có :
M là trung điểm AB
K là trung điểm BC
=> MK là đường trung bình
=> MK // AC , MK = \(\frac{AC}{2}\)
=> MK = NH
Xét tứ giác MNKH có :
MN//HK
MK = NH
=> MNKH là hình thang cân
b) Xét \(\Delta AED\)có :
H là trung điểm AE
K là trung điểm AD
=> HK là đường trung bình
=> HK // ED
Xét \(\Delta ACE\)có :
HC là trung trực
=> \(\Delta ACE\)cân tại C
=> AC = CE
Xét tứ giác ACDB có :
K là trung điểm BC
K là trung điểm AD
=> ACDB là hình hình hành
=> AC = BD
Mà CE = AC (cmt)
=> BD =CE
Mà BC // ED
=> BCDE là hình thang cân