K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2021

cho tam giác ABC có AB = AC. Kẻ tia phân giác AM của góc BAC ( M thuộc BC )a. Chứng minh : Tam giác BAM = tam giác CAM 

b. Chứng minh : AM vuông góc BC 

c. Trên nửa mặt phẳng bờ BC không chứa điểm A lấy điểm D sao cho DB = DC. Chứng minh rằng : AD là trung trực BC

a: Xét ΔAMB và ΔNMC có

MA=MN

góc AMB=góc NMC

MB=MC

Do đó: ΔAMB=ΔNMC

b: Xét ΔBAI có

BH vừa là đường cao, vừa là trung tuyến

nên ΔBAI cân tại B

=>BA=BI=CN

6 tháng 2 2016

vẽ hình nha bạn

ghi từng bài thui

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc AMB=góc AMC=180/2=90 độ

=>AM vuông góc BC

b: Xét ΔIBC và ΔINA có

IB=IN

góc BIC=góc NIA

IC=IA

=>ΔIBC=ΔINA

=>góc IBC=góc INA

=>BC//NA

 

a: Xét ΔACD có AC=AD

nên ΔACD cân tại A

Xét ΔABE có AB=AE
nên ΔABE cân tại A

b: Xét ΔABC và ΔAED có

AB=AE

\(\widehat{BAC}=\widehat{EAD}\)

AC=AD

Do đó: ΔABC=ΔAED

Suy ra: BC=ED

c: Ta có: ΔABE cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

17 tháng 7 2019

A B C N M D H I

a, xét tam giác AMB và tam giác NMC có : 

BM = MC do M là trung điểm của BC (gt)

AM = NM do M là trung điểm của AN (Gt)

góc AMB = góc NMC (đối đỉnh)

=> tam giác AMB = tam giác NMC (c-g-c)

b,  tam giác AMB = tam giác NMC (câu a)

=> góc ABM = góc MCN (đn)

c, tam giác AMB = tam giác NMC (câu a) 

=> BA = CN (đn)       (1)

xét tam giác BAH và tam giác BIH có : BH chung

góc BHA = góc BHI = 90 (gt) 

HI = HA (Gt)

=> tam giác BAH = tam giác BIH (2cgv)

=> BI = BA (đn)     (2)

(1)(2) => BI = CN

a) Xét ∆ABM và ∆CMN ta có : 

AM = MN 

BM = MC 

AMB = CMN ( đối đỉnh) 

=> ∆ABM = ∆CMN (c.g.c)

b) Vì ∆ABM = ∆CMN (cmt) 

=> ABM = NCM 

Mà 2 góc này ở vị trí so le trong 

=> AB //NC 

=> DB // NC 

Ta có : BDC + DCN = 180° ( kề bù) 

=> DCN = 90° 

c) Xét ∆ vuông ABH và ∆vuông IHB ta có : 

AH = HI 

BH chung

=> ∆ABH = ∆IHB ( 2 cạnh góc vuông) 

=> BA = BI 

Mà AB = CN (cmt)

=> BI = CN ( cùng bằng BA)

a) Xét ΔAMB và ΔNMC có 

MA=MN(gt)

\(\widehat{AMB}=\widehat{NMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔNMC(c-g-c)

b) Ta có: ΔAMB=ΔNMC(cmt)

nên \(\widehat{ABM}=\widehat{NCM}\)(hai góc tương ứng)

hay \(\widehat{ABC}=\widehat{BCN}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//NC(Dấu hiệu nhận biết hai đường thẳng song song)

mà CD⊥AB(gt)

nên CD⊥CN

hay \(\widehat{DCN}=90^0\)

c) Xét ΔABH vuông tại H và ΔIBH vuông tại H có 

BH chung

HA=HI(gt)

Do đó: ΔABH=ΔIBH(hai cạnh góc vuông)

Suy ra: AB=IB(hai cạnh tương ứng)

mà AB=CN(ΔAMB=ΔNMC)

nên IB=CN(đpcm)

20 tháng 6 2017

Bài 1 :

Xét tam giác ABC và ADE có :

           góc EAD = góc CAB (đối đỉnh)

           CA=EA (gt)

            BA=DA (gt)

suy ra tam giác ABC=ADE (c.g.c)

suy ra :DE =BC ( 2 cạnh tương ứng ) ; góc E= góc C ; góc D = góc B (các góc tương ứng )

        Mà M; N lần lượt là trung điểm của DE và BC suy ra EN=DN=BM=CM

Xét tam giác ENA và CMA có:

         EN = CM ( cmt)

         góc E = góc C (cmt)

         AE = AC (gt)

suy ra tam giác EAN = CMA (c.g.c) suy ra AM =AN ( 2 cạnh tương ứng ) 

Xét tam giác NDA và MBA có:

            góc D= góc B (cmt)

            ND = MB (cmt )

            DA = BA (cmt )

suy ra tam giác NDA = MBA (c.g.c)suy ra  góc NAD =  góc MAB

   Ta có góc DAC +MAC+MAB = 180 độ ( vì D nằm trên tia đối của tia AB )

   Mà góc NAD = góc MAB suy ra góc DAC+MAC+NAD =180 độ

suy ra 3 điểm M,A,N thẳng hàng          (2)

                   Từ (1) và (2 ) suy ra A là trung điểm của MN

( mình vẽ hình hơi xấu , mong bạn thông cảm . Nếu đúng nhớ kết bạn với mình nhé , mong tin bạn ^-^)