Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: AH\(\perp\)BD(gt)
HB=HD(gt)
\(\Rightarrow\)AH là đường trung trực
\(\Rightarrow\)AB=AD (t/c đường trung trực trong tam giác)
b, Xét tam giác AHB và tam giác EHD có:
\(\widehat{AHB}=\widehat{EHD}=90^0\)(gt)
AH=HE(gt)
BH=HD(GT)
\(\Rightarrow\)Tam giác AHB = Tam giác EHD(c-g-c)
\(\Rightarrow\widehat{BHA}=\widehat{DEH}\)(2 góc tương ứng)
mà chúng có vị trí SLT
\(\Rightarrow\)AB//DE
Cm: a) Xét t/giác ABC có AH là đường cao và AH cũng là đường trung tuyến
=> t/giác ABC cân tại A
=> AB = AD
(có thể xét hai tam giác để giải)
b) Xét t/giác AHB và t/giác EHD
có BH = HD (gt)
AH = HE (gt)
\(\widehat{AHB}=\widehat{EHD}=90^0\)(đối đỉnh)
=> t/giác AHB = t/giác EHD (c.g.c)
=> \(\widehat{A_1}=\widehat{E_1}\)(2 góc t/ứng)
mà 2 góc này ở vị trí so le trong
=> AB // ED
c) Xét t/giác ACE có CH là đường cao
CH cũng là đường trung tuyến
=> t/giác ACE cân tại C
=> \(\widehat{EAC}=\widehat{AEC}\)
Xét t/giác DAE có DH là đường cao
DH cũng là đường trung tuyến
=> DAE cân tại D => AD = DE
=> \(\widehat{DAE}=\widehat{DEA}\)
Ta có: \(\widehat{CAE}=\widehat{CAD}+\widehat{DAE}\)
\(\widehat{CEA}=\widehat{CED}+\widehat{DEA}\)
mà \(\widehat{CAE}=\widehat{AEC}\) (cmt); \(\widehat{DAE}=\widehat{DEA}\)(cmt)
=> \(\widehat{CAD}=\widehat{CED}\)
Xét t/giác ADI và t/giác EDK
có: AD = DE (cmt)
\(\widehat{IAD}=\widehat{KED}\) (cmt)
\(\widehat{IDA}=\widehat{KDE}\) (đối đỉnh)
=> t/giác ADI = t/giác EDK (g.c.g)
=> DI = DK (2 cạnh t/ứng)
d) xem lại đề
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a/ Xét tg vuông ABH và tg vuông ADH có
AH chung
BH=HD (gt)
=> tg ABH = tg ADH (Hai tg vuông có 2 cạnh góc vuông = nhau)
=> AB = AD
b/
Ta có tg ABH = tg ADH \(\Rightarrow\widehat{BAH}=\widehat{DAH}\)
IE//AB \(\Rightarrow\widehat{BAH}=\widehat{DEH}\)
\(\Rightarrow\widehat{DAH}=\widehat{DEH}\) => tg DAE cân tại D => AD = DE
Mà AB = AD (cmt)
=> AB = DE
IE//AB => DE//AB
=> ABED là hình bình hành (Tứ giác có cặp cạnh đối // và bằng nhau là hình bình hành)
=> HA = HE (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
c/
Xét tg vuông ACH và tg vuông ECH có
CH chung
HA=HE (cmt)
=> tg ACH = tg ECH (Hai tg vuông có 2 cạnh góc vuông = nhau)
\(\Rightarrow\widehat{ACH}=\widehat{ECH}\) (1)
IE//AB \(\Rightarrow\widehat{IDC}=\widehat{ABH}\) (góc đồng vị)
\(\widehat{KDC}=\widehat{ADH}\) (góc đối đỉnh)
tg ABH = tg ADH \(\Rightarrow\widehat{ABH}=\widehat{ADH}\)
\(\Rightarrow\widehat{IDC}=\widehat{KDC}\) (2)
Xét tg IDC và tg KDC có DC chung (3)
Từ (1) (2) (3) => tg IDC = tg KDC => DI = DK
d/
Ta có
tg IDC = tg KDC (cmt) \(\Rightarrow CI=CK\) => tg CIK cân tại C
tg IDC = tg KDC (cmt) \(\Rightarrow\widehat{ICD}=\widehat{KDC}\) => CD là phân giác \(\widehat{ICK}\)
\(\Rightarrow CD\perp IK\) (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)
\(\Rightarrow IK\perp BC\)
Tham Khảo :
Để chứng minh các điều kiện trên, ta sẽ sử dụng các định lí và quy tắc trong hình học Euclid.
Chứng minh AB = AD:
Ta có AH vuông góc với BC, nên tam giác ABC và tam giác AHD là hai tam giác vuông cân.
Vì BH = HD (theo đề bài), nên ta có AB = AD (vì hai tam giác vuông cân có cạnh góc vuông bằng nhau).
Chứng minh H là trung điểm AE:
Vì BH = HD (theo đề bài), nên ta có AH là đường cao của tam giác ABC.
Do đó, H là trung điểm của cạnh BC (do đường cao chia đôi cạnh đáy).
Chứng minh DI = DK:
Ta có DE || AB (do DE và AB đều song song với BC).
Vì DE || AB và AH là đường cao của tam giác ABC, nên ta có DI/DK = AE/EB (theo định lí đường cao).
Vì H là trung điểm của AE (theo bước 2), nên ta có AE = 2AH.
Từ đó, ta có DI/DK = 2AH/EB.
Vì BH = HD (theo đề bài), nên ta có EB = 2BH.
Từ đó, ta có DI/DK = 2AH/(2BH) = AH/BH = 1.
Vậy, ta có DI = DK.
Chứng minh IK vuông góc với BC:
Ta có DE || AB (do DE và AB đều song song với BC).
Vì IK là đường chéo của tứ giác AIDE, nên ta cần chứng minh tứ giác AIDE là hình bình hành.
Ta đã chứng minh DI = DK (theo bước 3), nên tứ giác AIDE là hình bình hành.
Do đó, ta có IK vuông góc với BC (vì đường chéo của hình bình hành vuông góc với cạnh đáy).
Vậy, các điều kiện đã được chứng minh.
Bạn chú ý viết cách phần cho và phần yêu cầu.
a/ Xét t/g ABI và t/g ADI có
AI : chung
\(\widehat{BAI}=\widehat{CAI}\) (AI là pg góc BAC)
AB = AD (GT)
=> t/g ABI = t/g ADI (c.g.c)
=> BI = DI (2 cạnh t/ứ)
b/ Có t/g ABI = t/g ADI
=> \(\widehat{ABI}=\widehat{ADI}\)(2 góc t/ứ)
=> \(180^o-\widehat{ABI}=180^o-\widehat{ADI}\)
=> \(\widehat{IBK}=\widehat{IDC}\) Xét t/g BIK và t/g DIC có
\(\widehat{IBK}=\widehat{IDC}\)
IB = DI (cmt)
\(\widehat{BIK}=\widehat{DIC}\)(đối đỉnh)
=> t/g BIK = t/g DIC (g.c.g)
c/ Có t/g BIK = t/g DIC
=> BK = DC (2 cạnh t/ứ) => AB + BK = DC + AD
=> AK = AC
=> t/g AKC cân tại A
Mà AI là pg góc BAC (K thuộc AB)
=> AI đồng thời là đường cao t/g AKC
=> AI ⊥ KC Mà BH ⊥ KC
=> AI // BH
bạn tự vẽ hình nhá
Vì AI là tia phân giác ⇔ \(\widehat{BAI}=\widehat{DAI}=\dfrac{\widehat{BAC}}{2}\)
a) xét Δ ABI và ΔADI, có:
AB=AD
\(\widehat{BAI}=\widehat{DAI}\) (cmt)
AI chung
⇒Δ ABI =Δ ADI (c.g.c)
⇒BI=DI (2 cạnh t/ứng) (đpcm)
b) Do Δ ABI =Δ ADI (cmt) ⇒ \(\widehat{ABI}=\widehat{ADI}\)
Có: \(\widehat{ABI}+\widehat{IBK}\) =1800 (2 góc kề bù)
\(\widehat{ADI}+\widehat{IDC}\) =1800 (2 góc kề bù)
Mà \(\widehat{ABI}=\widehat{ADI}\) (cmt) ⇒ \(\widehat{IBK}=\widehat{IDC}\)
Vì \(\widehat{BIK}\) và \(\widehat{DIC}\) là 2 góc đối đỉnh ⇒ \(\widehat{BIK}\) =\(\widehat{DIC}\)
xét Δ BKI và Δ DCI có:
\(\widehat{IBK}=\widehat{IDC}\) (cmt)
BI=ID (cmt)
\(\widehat{BIK}\) =\(\widehat{DIC}\) (cmt)
⇒Δ BKI = Δ DCI (g.c.g) (đpcm)
c) Từ Δ BKI = Δ DCI (cmt) ⇒ BK=DC
Có AB=AD (gt) ; BK=DC (cmt)
⇔AB+BK=AD+DC
⇔AK=AC
⇒Δ ACK cân tại A.
Mà AI là phân giác của \(\widehat{KAC}\) (gt)
⇒AI vừa là đường phân giác vừa là đường cao của Δ ACK.
⇒AI ⊥ CK. mà BH ⊥ CK (gt)
⇒AI // BH (đpcm)
a: Xét ΔABI và ΔADI có
AB=AD
\(\widehat{BAI}=\widehat{DAI}\)
AI chung
Do đó: ΔABI=ΔADI
Suy ra: BI=DI
1.Tự vẽ hình ha!
Cm:
a) Xét \(\Delta OAD\)và \(\Delta OCB\)có:
OA=OC (gt)
OD=OB (gt)
\(\widehat{O}\)chung
=>\(\Delta OAD\)=\(\Delta OCB\)(c.g.c)
=>AD=BC (2 cạnh tương ứng) (Đpcm)
b) Vì\(\Delta OAD\)=\(\Delta OCB\)(cmt) => \(\widehat{ODA}=\widehat{OBC};\widehat{OAD}=\widehat{OCB}\)(2 góc t/ứ)
Ta có: \(\widehat{OAD}+\widehat{DAB}=180^0\)(2 góc kề bù)
\(\Rightarrow\widehat{DAB}=180^0-\widehat{OAD}\)
Lại có: \(\widehat{OCB}+\widehat{BCD}=180^0\)(2 góc kề bù)
\(\Rightarrow\widehat{BCD}=180^0-\widehat{OCB}\)
Mà \(\widehat{OAD}=\widehat{OCB}\)(cmt)
\(\Rightarrow\widehat{DAB}=\widehat{BCD}\)hay \(\widehat{IAB}=\widehat{ICD}\)
Ta có: OA=OC;OB=OD (GT)
=> OB-OA=OD-OC
=>AB=CD
Xét\(\Delta AIB\) và\(\Delta CID\)có:
AB=CD (cmt)
\(\widehat{IAB}=\widehat{ICD}\)(cmt)
\(\widehat{ODA}=\widehat{OBC}\)(cmt)
=>\(\Delta AIB\)=\(\Delta CID\)(g.c.g)
=>AI=IC; IB=ID (đpcm)
c) Xét \(\Delta OID\)và\(\Delta OIB\)có:
OD=OB (gt)
ID=IB (cmt)
\(\widehat{ODA}=\widehat{OBC}\)(cmt)
=>\(\Delta OID\)=\(\Delta OIB\)(c.g.c)
=>\(\widehat{DOI}=\widehat{BOI}\)
=> OI là tia pg của góc xOy (đpcm)