K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

Tự vẽ hình nha
c) AE là tia phân giác của góc CAB => sđcEC=sđcEB=> EC=EB=> OE vuông góc vs BC
Góc OAE= góc OEA(1)
OE song song vs AH (cùng vuông góc vs BC)=> OEA=EAH(2)
Từ (1) và (2) => góc OAE= góc EAH => AE là tia phân giác của góc OAH

Vẽ đường kính CM

\(MA\perp AC\)(\(\Delta MAC\)nội tiếp)

\(BE\perp AC\)(giả thiết)

\(\Rightarrow\)\(MA//BH\) (1)

\(MB\perp BC\)(\(\Delta MBC\)nội tiếp)

\(AH\perp BC\)(giả thiết)

\(\Rightarrow\)\(MB//AH\)(2)

Từ (1)(2):

\(\Rightarrow\)\(MAHB\)là hình bình hành.

\(\Rightarrow\)\(AH=BM\)

Do\(\widehat{BAC}=60^0\)

\(\Rightarrow BC=R\sqrt{3}\)

Áp dụng địn lí Pytago vào \(\Delta BMC\)

\(BM^2+BC^2=MC^2\)

\(\Leftrightarrow\)\(BM^2=4R^2-3R^2\)

\(\Leftrightarrow\)\(BM^2=R^2\)

\(\Leftrightarrow\)\(BM=\sqrt{R^2}=R\)

\(\Rightarrow\)\(AH=BM=R\)

Mà \(AO=\frac{2R}{2}=R\)

\(\Rightarrow\)\(AH=AO\)

\(\Rightarrow\)\(\Delta AHO\)cân tại \(A\)(ĐPCM)

5 tháng 6 2019

M A B C I D N O H K

a) CM: \(\widehat{OBM}=\widehat{ODC}\)

 \(\widehat{OBM}+\widehat{OBC}=180^o\)( kề bù)

\(\widehat{ODC}+\widehat{OBC}=180^o\)( tứ giác ODCB nội tiếp )

=> \(\widehat{OBM}=\widehat{ODC}\)

b) 

+)Xét tam giác MCN có CO là tia phân giác đồng thời là đường cao

=> Tam giác CMN cân tại C (1)

=> \(\widehat{BMA}=\widehat{DNA}=\widehat{BAM}\)( CD//BA => DN//BA)

=> Tam giác BMA cân tại B

=> BM=BA=CD ( ABCD là hình bình hành) (2)

+) CO là phân giác \(\widehat{BCD}\)

=> \(\widebat{BO}=\widebat{DO}\)

=> BO=DO (3)

+) Xét tam giác BOM và tam giác DOC có:

\(\widehat{OBM}=\widehat{ODC}\)( theo a)

BM=CD ( theo 2)

BO=DO (theo 3)

=> \(\Delta BOM=\Delta DOC\)

+) OM=OC

Và từ (1) => CO là đường trung trực của MN

=> OM=ON

Vậy OM=ON=OC

=> O là tâm đường tròn ngoại tiếp tam giác CMN

c)  GỌi H là giao của IO và BD

=> IH vuông BD và H là trung điể m BD

Ta có: \(KD^2=\left(HD-HK\right)^2=HD^2+HK^2-2.HD.HK=ID^2-IH^2+IK^2-IH^2-2HD\left(HD-KD\right)\)

\(=ID^2+IK^2-2\left(IH^2+HD^2\right)+2HD.KD=ID^2+IK^2-2ID^2+2HD.KD\)

\(=IK^2-ID^2+2HD.KD\)

=> \(IB^2-IK^2=ID^2-IK^2=2HD.KD-KD^2\)

=> \(\frac{IB^2-IK^2}{KD^2}=\frac{2HD-KD}{KD}=\frac{BD-KD}{KD}=\frac{BK}{KD}\)(4)

Ta lại có: CK là phân giác trong của tam giác CBD

=> \(\frac{BK}{KD}=\frac{CB}{CD}\)

Và MB=DC ( theo cm câu a) , CM=CN ( Tam giác CMN cân)

=> CB=DN

=> \(\frac{BK}{KD}=\frac{DN}{MB}\)(5)

Từ (4), (5)

=> ĐPCM

6 tháng 12 2019

e mới hok lớp dưới 9 thôi