Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O E F K I J H M N S T L
c) AT là đường kính của (O), dễ thấy H,K,T thẳng hàng, gọi TH cắt (O) lần nữa tại S, ta được ^ASH = 900
Ta có A,E,H,F,S cùng thuộc đường tròn đường kính AH, suy ra:
(ES,EF) = (AS,AB) = (SC,SB), (SF,SE) = (BS,BC) do đó \(\Delta\)SFE ~ \(\Delta\)SBC
Vì K,L là trung điểm của BC,EF nên \(\Delta\)SFL ~ \(\Delta\)SBK, suy ra \(\Delta\)SFB ~ \(\Delta\)SLK, (KS,KL) = (BS,BA) (1)
Lại có: \(\frac{MF}{MB}=\frac{HF}{HB}=\frac{HE}{HC}=\frac{NE}{NC}\), \(\Delta\)SEC ~ \(\Delta\)SFB, suy ra \(\Delta\)SMN ~ \(\Delta\)SBC
Tương tự như trên, ta thu được (KS,KI) = (BS,BA) (2)
Từ (1);(2) suy ra K,I,L thẳng hàng. Mặt khác K,L,J thẳng hàng vì chúng cách đều E,F.
Do vậy I,J,K thẳng hàng.
Vẽ đường kính CM
\(MA\perp AC\)(\(\Delta MAC\)nội tiếp)
\(BE\perp AC\)(giả thiết)
\(\Rightarrow\)\(MA//BH\) (1)
\(MB\perp BC\)(\(\Delta MBC\)nội tiếp)
\(AH\perp BC\)(giả thiết)
\(\Rightarrow\)\(MB//AH\)(2)
Từ (1)(2):
\(\Rightarrow\)\(MAHB\)là hình bình hành.
\(\Rightarrow\)\(AH=BM\)
Do\(\widehat{BAC}=60^0\)
\(\Rightarrow BC=R\sqrt{3}\)
Áp dụng địn lí Pytago vào \(\Delta BMC\)
\(BM^2+BC^2=MC^2\)
\(\Leftrightarrow\)\(BM^2=4R^2-3R^2\)
\(\Leftrightarrow\)\(BM^2=R^2\)
\(\Leftrightarrow\)\(BM=\sqrt{R^2}=R\)
\(\Rightarrow\)\(AH=BM=R\)
Mà \(AO=\frac{2R}{2}=R\)
\(\Rightarrow\)\(AH=AO\)
\(\Rightarrow\)\(\Delta AHO\)cân tại \(A\)(ĐPCM)
A B C E F N M O D G
1. Vì \(\widehat{ADB}=\widehat{AEB}=90^0\) nên tứ giác AEBD nội tiếp đường tròn đường kính AB.
2. Tứ giác AEBD, AFCD nội tiếp và BE, CF tiếp xúc (O), suy ra:
\(\widehat{AED}=\widehat{ABC}=\widehat{ACF}=\widehat{ADF};\widehat{AFD}=\widehat{ADE}\)
Do đó \(\Delta\)EAD ~ \(\Delta\)DAF, suy ra \(AD^2=AE.AF\)
3. Ta có \(AE.AF=\left(AM+AN\right)^2=\frac{\left(AE+AF\right)^2}{4}\Leftrightarrow\left(AE-AF\right)^2=0\Leftrightarrow AE=AF\)
Từ đó \(\Delta\)AEG = \(\Delta\)AFG (Cạnh huyền.Cạnh góc vuông), suy ra GA là phân giác góc BGC
Mà \(\Delta\)GBC cân tại G nên GA là trung trực BC hay \(\Delta\)ABC cân tại A
Vậy đường cao AD trùng với AO hay A,O,D thẳng hàng.