Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AFH+góc AEH=180 độ
=>AEHF nội tiếp
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: BFEC nội tiếp
=>góc IBF=góc IEC
Xét ΔIBF và ΔIEC có
góc IBF=góc IEC
góc I chung
=>ΔIBF đồng dạng với ΔIEC
=>IB/IE=IF/IC
=>IB*IC=IE*IF
a) Xét tứ giác BFHD có
\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối
\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC một góc bằng 900
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b:
Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=>ΔMEB đồg dạg vơi ΔMCF
=>ME/MC=MB/MF
=>ME/MB=MC/MF
Xét ΔAMF và ΔEMK có
MA/ME=MF/MK
góc AMF=góc EMK
=>ΔAMF đồng dạng với ΔEMK
=>góc FAM=góc KEM
=>AEFK nội tiếp
mà AEHK nội tiếp
nên A,E,F,K,H cùng thuộc 1 đường tròn
a/
Ta có D và E cùng nhìn HC dưới 1 góc vuông nên D và E thuộc đường tròn đường kính HC => CDHE là tứ giác nội tiếp
Ta có E và F cùng nhìn BC dưới 1 góc vuông nên E và F thuộc đường tròn đường kính BC => BCEF là tứ giác nội tiếp
b/ Xét tg MEB và tg MCF có
\(\widehat{EMC}\) chung
\(\widehat{MEB}=\widehat{MCF}\) (góc nội tiếp cùng chắn cung BF)
=> tg MEB đồng dạng với tg MCF (g.g.g)
\(\Rightarrow\dfrac{ME}{MC}=\dfrac{MB}{MF}\Rightarrow MB.MC=ME.MF\)
a) theo gt, BFC=BEC=90
=> BFEC nội tiếp (có 2 góc kề bang nhau)
góc AFC=ADC=90 => AFDC nội tiếp ( có 2 cạnh kề cùng nhìn một đoan thẳng bằng nhau)
b) vì tứ giác ABA'C nội tiếp => ABC = AA'C (cùng chắn cung AC)
Lại có ABC= AHF (Cùng phụ với góc BAD)
Ta thấy AFHE nội tiếp vì AFH +AEH = 90+90=180
=> AHF=AEF (Cùng chắn cung AF)
=>Đpcm
c) vì tứ giác EQA'C nôi tiếp
nên EQA'+ECA'=180 mà ECA'=90 vì là góc nội tiếp chắn nửa đường tròn
=> MQP=EQA'=90 ( vì MQP+EQA=180)
Trong đó ADC=90 =>Đpcm
d) Vì ABA'C VÀ FBDH nội tiếp nên góc NA'C=ABC=DHC
=>NA'C=DHC=>Đpcm
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc DCH=góc HCB=góc HAB=1/2*sđ cung BK
=góc DCK
b: Xét ΔBEI và ΔBME có
góc BEI=góc BME(=1/2*sđ cung BK)
góc EBI chung
=>ΔBEI đồng dạng với ΔBME
=>BE/BM=BI/BE
=>BE^2=BM*BI