K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔDMC có

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔAMB=ΔDMC

Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

b: Xét ΔCBD có 

M là trung điểm của BC

F là trung điểm của DC

Do đó: MF là đường trung bình

=>MF//BD

=>MF//AC

hay MK//AC
Xét ΔBAC có 

M là trung điểm của BC

MK//AC
DO đó: K là trung điểm của BA

Xét tứ giác BKCF có

BK//CF

BK=CF

Do đó: BKCF là hình bình hành

Suy ra: Hai đường chéo BC và KF cắt nhau tại trung điểm của mỗi đường

hay M là trung điểm của KF

24 tháng 2 2018

Mình làm câu đầu tiên nhé :)

a) Xét tam giác ABM và tam giác DMC có :

BM = CM ( gt )

\(\widehat{AMB}=\widehat{DMC}\)

AM = DM ( gt )

\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

\(\Rightarrow\)\(\widehat{BAM}=\widehat{DCM}\)( 2 góc tương ứng bằng nhau )

Mà 2 góc này ở vị trí so le trong nên suy ra AB // CD 

5 tháng 4 2020

Xét ΔDCM và ΔABM có:

AM = MD ( GT )

BM = BC (AM là đường trung tuyến của ΔABC tại đỉnh A)

góc BMA = góc DMC ( hai góc đối đỉnh)

=> ΔDMC = Δ ABM (c.g.c)

=> Góc BAM = Góc MDC ( hai góc tương ứng)

mà Góc BAM và Góc MDC  nằm ở vị trí so le trong

=> AB\\CD

b) xét ΔAKM và Δ DFM có

góc KMA = góc DMF ( 2 góc đối đỉnh)

góc BAM = góc MDC (cmt)

AM = MD ( GT )

=> ΔAKM = ΔDFM (g.c.g)

=> MK = MF ( 2 cạnh tương ứng)

=> M là trung điểm của KF

Học tốt

a: Xét ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔMAB=ΔMDC

=>góc MAB=góc MDC

=>AB//DC

b: Xét ΔKMB và ΔFMC có

góc MBK=góc MCK

MB=MC

góc KMB=góc FMC

=>ΔKMB=ΔFMC

=>MK=MF

=>M là trung điểm của KF

28 tháng 5 2020

a. Xét tam giác ABM và tam giác DCM có:

+, BM = MC ( AM là đường trung tuyến của tam giác ABC )

+, Góc AMB = góc DMC ( 2 góc đối đỉnh )

+, AM = MD ( gt )

=> tam giác ABM = tam giác DCM ( c.g.c )

=> AB = CD ( 2 cạnh tương ứng ) 

=> góc BAM = góc CDM ( 2 góc tương ứng ) 

Mà 2 góc này ở vị trí so le trong

=> AB // CD ( đpcm )

30 tháng 6 2021

có hình ko vậy ạ

 

16 tháng 6 2019

14 tháng 4 2019

a, xét t.giác AMB và t.giác DMC có:

            AM=DM(gt)

           \(\widehat{AMB}\)=\(\widehat{DMC}\)(vì đối đỉnh)

          CM=BM(gt)

=>t.giác AMB=t.giác DMC(c.g.c)

b,đề bài bị thiếu

15 tháng 4 2019

mình viết nhầm câu b) I là trung điểm cD. 

20 tháng 4 2017

Không cần vẽ hình chỉ cần lời giải thui

3 tháng 7 2016

Vẽ hình đj bn

3 tháng 7 2016

Bạn tự vẽ hình nhaleu

a.

Xét tam giác ABO và tam giác CDO có:

AO = CO (BO là trung truyến của tam giác ABC)

AOB = COD (2 góc đối đỉnh)

BO = DO (gt)

=> Tam giác ABO = Tam giác CDO (c.g.c)

=> BAO = DCO (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AB // CD.

b.

BO là trung tuyến của tam giác ABC

=> O là trung điểm của AC

=> AO = CO = \(\frac{1}{2}AC\) (1)

  • BO = DO (gt) => CO là trung tuyến của tam giác BCD
  • BM = CM (M là trung điểm của BC) => DM là trung tuyến của tam giác BCD

=> I là giao điểm của 2 đường trung tuyến CO và DM của tam giác BCD

=> I là trọng tâm của tam giác BCD.

=> IO = \(\frac{1}{3}OC\) (2)

Thay (1) vào (2), ta có:

IO = \(\frac{1}{3}OC=\frac{1}{3}\times\frac{1}{2}AC=\frac{1}{6}AC\)

\(\Rightarrow AC=6\times IO\)

c.

AB // CD

=> EBM = DCM (2 góc so le trong)

Xét tam giác EBM và tam giác DCM có:

EBM = DCM (chứng minh trên)

BM = CM (M là trung điểm của BC)

BME = CMD (2 góc đối đỉnh)

=> Tam giác EBM = Tam giác DCM (g.c.g)

=> BE = CD (2 cạnh tương ứng)

mà CD = AB (tam giác ABO = tam giác CDO)

=> BE = AB.

Chúc bạn học tốtok