Cho tam giác ABC nhọn (AB < AC), đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với ba cạnh BC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2024

a) Do AE tiếp xúc (I) tại E nên \(\widehat{AEI}=90^o\). Đồng thời dễ dàng chứng minh \(AI\perp EF\) tại J.

 Tam giác AEI vuông tại E có đường cao EJ nên \(IJ.IA=IE^2=ID^2=r^2\)

 \(\Rightarrow\dfrac{IJ}{ID}=\dfrac{ID}{IA}\). Từ đó dễ có đpcm.

b) Dễ dàng chứng minh tứ giác IDSJ nội tiếp (do có \(\widehat{IJS}=\widehat{IDS}=90^o\)). Do đó \(\widehat{TIJ}=\widehat{TSD}\), dẫn đến \(\Delta TIJ~\Delta TSD\left(g.g\right)\) \(\Rightarrow\dfrac{TI}{TS}=\dfrac{TJ}{TD}\) \(\Rightarrow\) đpcm

  Gọi P là giao điểm của AD và IS. Khi đó \(\widehat{PID}=\widehat{SID}=\widehat{SJD}\) và \(\widehat{PDI}=\widehat{ADI}=\widehat{IJD}\) (do đã có \(\Delta IJD~\Delta IDA\) ở câu a)) 

 Do đó \(\widehat{PID}+\widehat{PDI}=\widehat{SJD}+\widehat{IJD}=\widehat{SJI}=90^o\)

 \(\Rightarrow\Delta IPD\) vuông tại P, dẫn tới đpcm. 

c) Gọi Q là giao điểm của AD và EF. Qua Q kẻ đường thẳng song song với BC cắt DE, DN lần lượt tại X, Y.

 Trước hết, ta chứng minh \(\dfrac{EQ}{ES}=\dfrac{FQ}{FS}\) (*)

 Ta dễ dàng chứng minh AD, BE, CF đồng quy do định lý Ceva đảo trong tam giác ABC.

 \(\Rightarrow\dfrac{QF}{QE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\) (Ceva thuận)

 Mặt khác, áp dụng định lý Menelaus cho tam giác AEF với cát tuyến SBC, ta có: \(\dfrac{SF}{SE}.\dfrac{BA}{BF}.\dfrac{CE}{CA}=1\)

 Từ đó suy ra \(\dfrac{QF}{QE}=\dfrac{SF}{SE}\Rightarrow\dfrac{EQ}{ES}=\dfrac{FQ}{FS}\) . Vậy (*) được chứng minh.

 Áp dụng định lý Thales \(\Rightarrow\dfrac{YQ}{SD}=\dfrac{FQ}{FS};\dfrac{XQ}{SD}=\dfrac{EQ}{ES}\)

 Kết hợp với (*), ta có ngay \(YQ=XQ\), từ đó dễ dàng suy ra M là trung điểm NE dựa vào bổ đề hình thang.

14 tháng 4 2021

a) Do BE và CF là các đường cao trong tam giác ABC nên ˆBEC=90∘ˆBFC=90∘ 

Tứ giác BCEF có góc E và góc F cùng nhìn cạnh BC và bằng nhau (cùng bằng 90∘) nên là tứ giác nội tiếp.

b) Tứ giác BCEF là tứ giác nội tiếp nên ˆAFE=ˆACB, mà ˆACB=ˆASB (cùng chắn cung AB) nên ˆAFE=ˆASB

Suy ra tứ giác BFMS là tứ giác nội tiếp.

Do đó ˆFMS=180∘−ˆFBS=90∘.. Vậy OA ⊥⊥ EF.

c)

+) Tứ giác BCEF nội tiếp nên ˆAEF=ˆABC (1)

Từ OA ⊥ PE suy ra ˆAIB=ˆAPE(cùng phụ với ˆMAP). (2)

Từ (1) và (2) suy ra ΔAPE∽ΔABI (g.g).

+) Tứ giác BHCS có BH // CS (cùng vuông góc với AS) và BS // CH (cùng vuông góc với AB) nên là hình bình hành. Do đó ba điểm H, K, S thẳng hàng.

Ta sẽ chứng minh hai góc đồng vị ˆPIM và HSM^ bằng nhau.

Tứ giác PDIM nội tiếp (vì có hai góc vuông M và D đối nhau) nên ˆPIM=ˆPDM (3)

Ta có:

ΔAHE∽ΔACDΔ nên AH.AD = AE.AC.

ΔAME∽ΔACSnên AM.AS = AE.AC.

Suy ra AH.AD = AM.AS ⇒AH/AM=AS/AD.

Do đó ΔMAH∽ΔDAS(c.g.c). Suy ra AHM^=ASD^.

Từ đó ta có tứ giác DHMS là tứ giác nội tiếp. Suy ra ˆHDM=ˆHSM. (4)

Từ (3) và (4) suy ra HS // PI, hay KH // PI.

7 tháng 6 2021

A B C O E F K I J H M N S T L

c) AT là đường kính của (O), dễ thấy H,K,T thẳng hàng, gọi TH cắt (O) lần nữa tại S, ta được ^ASH = 900

Ta có A,E,H,F,S cùng thuộc đường tròn đường kính AH, suy ra:

(ES,EF) = (AS,AB) = (SC,SB), (SF,SE) = (BS,BC) do đó \(\Delta\)SFE ~ \(\Delta\)SBC

Vì K,L là trung điểm của BC,EF nên \(\Delta\)SFL ~ \(\Delta\)SBK, suy ra \(\Delta\)SFB ~ \(\Delta\)SLK, (KS,KL) = (BS,BA) (1)

Lại có: \(\frac{MF}{MB}=\frac{HF}{HB}=\frac{HE}{HC}=\frac{NE}{NC}\)\(\Delta\)SEC ~ \(\Delta\)SFB, suy ra \(\Delta\)SMN ~ \(\Delta\)SBC

Tương tự như trên, ta thu được (KS,KI) = (BS,BA) (2)

Từ (1);(2) suy ra K,I,L thẳng hàng. Mặt khác K,L,J thẳng hàng vì chúng cách đều E,F.

Do vậy I,J,K thẳng hàng.

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0
Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này

15 tháng 3 2020

ID cắt EF tại G. cần chứng minh A,G,M thẳng hàng

A B C I D E F M M' G S T

Ta có : AG cắt BC tại M'. đường thẳng qua G song song với BC cắt AB,AC tại S,T

Dễ thấy \(ID\perp BC\)\(\Rightarrow IG\perp ST\)

Tứ giác FSGI nội tiếp, tứ giác IGET nội tiếp \(\Rightarrow\hept{\begin{cases}\widehat{IFG}=\widehat{ISG}\\\widehat{ITG}=\widehat{IEG}\end{cases}\Rightarrow\widehat{ISG}=\widehat{ITG}}\)( Vì \(\widehat{IFG}=\widehat{IEG}\))

\(\Rightarrow\Delta IST\)cân tại I có \(IG\perp ST\)nên GS = GT

Xét hình thang STCB có BS,M'G,CT cắt nhau tại A và G là trung điểm của ST nên M' là trung điểm của BC

\(\Rightarrow M'\equiv M\)hay A,G,M thẳng hàng

15 tháng 3 2020

A B C F E K D I M G H N

AM cắt KI tại H 

Dễ thấy  \(AI\perp EF\)nên \(KG\perp AI\)

\(\Delta AIK\)có \(IG\perp AK;KG\perp AI\)nên G là trực tâm \(\Rightarrow AG\perp KI\)tại H

AI cắt EF tại N 

Tứ giác ANHK nội tiếp \(\Rightarrow IH.IK=IN.IA=IF^2=ID^2\Rightarrow\frac{IH}{ID}=\frac{ID}{IK}\)

\(\Rightarrow\Delta IDH\approx\Delta IKD\left(c.g.c\right)\)\(\Rightarrow\widehat{IDH}=\widehat{IKD}\)( 1 )

Tứ giác IHMD nội tiếp \(\Rightarrow\widehat{IDH}=\widehat{IMH}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\widehat{IKD}=\widehat{IMH}\)

Mà \(\widehat{IMH}+\widehat{MIH}=90^o\)suy ra \(\widehat{IKD}+\widehat{MIH}=90^o\)

\(\Rightarrow MI\perp DK\)