Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác AIHK có
\(\widehat{KAI}=\widehat{AIH}=\widehat{AKH}=90^0\)
Do đó: AIHK là hình chữ nhật
Suy ra: IK=AH
a: Xét ΔABC có AI/AB=AK/AC
nên IK//BC
=>BIKC là hình thang
b: Xét tứ giác AHBM có
I là trung điểm chung của AB và HM
nên AHBM là hình bình hành
mà góc AHB=90 độ
nên AHBM là hình chữ nhật
c: Xét tứ giác ANHI có
O là trung điểm chung của AH và NI
AH vuông góc với NI
Do đó: ANHI là hình thoi
a: Xet ΔABC có AI/AB=AK/AC
nên IK//BC
=>BIKC là hình thang
mà góc B=góc C
nên BIKC là hình thang cân
b: Xét ΔBAC có BH/BC=BI/BA
nên HI//AC và HI=AC/2
=>HI//AK và HI=AK
=>AIHK là hình bình hành
mà AI=AK
nên AIHK là hình thoi
a) \(\Delta ABC\) có MA = MB; NA = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)MN // BC
\(\Rightarrow\)Tứ giác BMNC là hình thang
b) \(\Delta ABC\)có NA = NC; QB = QC
\(\Rightarrow\)NQ // AB; NQ = 1/2 AB
mà MA = 1/2 AB
\(\Rightarrow\)NQ = MA
Tứ giác AMQN có NQ // AM; NQ = AM
\(\Rightarrow\)AMQN là hình bình hành
1) Vì I là trung điểm của AB ; K là trung điểm của AC => IK là đường trung bình của Tam giác ABC
=> IK // BC hay tứ giác IKCB là hình thang
2) Vì I là trung điểm của AB ; N là trung điểm của BH => IN là đường trung bình của tam giác ABH
=> IN = \(\frac{1}{2}\) AH (1)
Vì K là trung điểm của AC ; M là trung điểm của HC => KM là đường trung bình của tam giác ACH
=> KM = \(\frac{1}{2}\) AH
Từ (1); (2) => \(IN=KM=\frac{1}{2}AH\)