Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé. EF cắt AH tại L.
Xét tam giác AIM vuông tại I(MI vuông góc AB) có HF//IM ( H là trực tâm nên HF vuông góc AB, từ vuông góc đến song song >> HF//IM) >> \(\frac{AF}{AI}=\frac{AH}{AM}\left(Talet\right)\)
CMTT >> \(\frac{AE}{AK}=\frac{AH}{AM}\left(Talet\right)\)>> \(\frac{AF}{AI}=\frac{AE}{AK}\). Theo Talet đảo có EF // IK.
Xét tam giác AIK có EF // IK >> AEF đồng dạng AIK ( bạn tự cm, quá dễ) >> góc AFE = góc AIK và góc AEF = góc AKI
Xét tam giác AFL và tam giác AID : chung góc A và AFL = AID (cmt) >> AFL đồng dạng AID >> ALF = ADI đồng vị >> ID // EL
CMTT thì LE // DK. Có E,L,F thẳng hàng nên theo tiên đề Euclid suy ra I,D,K thẳng hàng.
bạn ơi, AFL=AID đang cần chứng minh mà, AFL=AIK mới đúng. nếu AFL=AID=AIK thì I,D,K thẳng hàng rồi.
a) Xét \(\Delta EBC\)có \(\hept{\begin{cases}BE\perp AC\\DM\perp AC\end{cases}\Rightarrow}\)DM//EB => \(\frac{MC}{CE}=\frac{CD}{CB}\left(1\right)\)
Xét \(\Delta\)CFB có: \(\hept{\begin{cases}ND\perp FC\\BF\perp FC\end{cases}\Rightarrow}\)ND//BF => \(\frac{NC}{FC}=\frac{CD}{CB}\left(2\right)\)
Từ (1)(2) => \(\frac{MC}{CE}=\frac{NC}{FC}\Rightarrow MC\cdot FC=CE\cdot NC\left(đpcm\right)\)
b) Xét tam giác FBC có:\(\hept{\begin{cases}QD\perp FB\\FC\perp FB\end{cases}\Rightarrow}\)QD//FC => \(\frac{QF}{FB}=\frac{DC}{BD}\)
mà \(\frac{DC}{BD}=\frac{MC}{CE}=\frac{NC}{FC}\Rightarrow\frac{QF}{FB}=\frac{MC}{CE}=\frac{NC}{FC}\)hay \(\frac{QF}{FB}=\frac{NC}{CF}=\frac{MC}{CE}\)
=> Q,N,M thẳng hàng mà \(\frac{NC}{CF}=\frac{MC}{CE}\)=> MN//EF => QM//EF (đpcm)
c) Xét tam giác BEC có \(\hept{\begin{cases}PD\perp BE\\CE\perp BE\end{cases}}\)=> PD//EC => \(\frac{PE}{EB}=\frac{DC}{BC}\)
mà \(\frac{DC}{CB}=\frac{NK}{CF}=\frac{MC}{CE}=\frac{QF}{FB}\)
=> M,N,Q thẳng hàng (đpcm)
a) Ta có:
\(\left\{{}\begin{matrix}BH\perp AC\\KC\perp AC\end{matrix}\right.\) ⇒ \(BH\text{//}KC\)
\(\left\{{}\begin{matrix}CH\perp AB\\BK\perp AB\end{matrix}\right.\) ⇒ \(CH\text{//}BK\)
\(Xét\) \(tứ\) \(giác\) \(BKCH\) \(có:\) \(\left\{{}\begin{matrix}BH\text{//}KC\\CH\text{//}BK\end{matrix}\right.\)
⇒ Tứ giác \(BKCH\) là hình hình hành. Mà M là trung điểm của đường chéo BC
⇒ \(\left\{{}\begin{matrix}H,M,K_{ }thẳng_{ }hàng\\HM=MK\end{matrix}\right.\)
Xét \(\Delta AHK\) có: \(\left\{{}\begin{matrix}AI=IK\left(gt\right)\\HM=MK\left(cmt\right)\end{matrix}\right.\)
⇒ \(IM\) là đường trung bình của \(\Delta AHK\)
⇒ \(IM=\dfrac{1}{2}AH\) \(\left(ĐPCM\right)\)
c)
Ta có:
\(\dfrac{S_{\Delta HBC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HD.BC}{\dfrac{1}{2}.AD.BC}=\dfrac{HD}{AD}\)
\(\dfrac{S_{\Delta HAC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HE.AC}{\dfrac{1}{2}.BE.AC}=\dfrac{HE}{BE}\)
\(\dfrac{S_{\Delta HBA}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HF.AB}{\dfrac{1}{2}.CF.AB}=\dfrac{HF}{CF}\)
⇒ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{\Delta HBC}+S_{\Delta HAC}+S_{\Delta HAB}}{S_{\Delta ABC}}=\dfrac{S_{\Delta ABC}}{S_{\Delta ABC}}\)
⇔ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\) \(\left(ĐPCM\right)\)
a) Xét tứ giác BHCK có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: BHCK là hình bình hành(cmt)
nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)
Ta có: BK//CH(cmt)
nên BK//CF
Ta có: BK//CF(cmt)
CF⊥AB(gt)
Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)
Ta có: CK//BH(cmt)
nên CK//BE
Ta có: CK//BE(cmt)
BE⊥AC(gt)
Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)
c) Vì H và I đối xứng nhau qua BC
nên BC là đường trung trực của HI
⇔C nằm trên đường trung trực của HI
hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: BHCK là hình bình hành(cmt)
nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)
Từ (1) và (2) suy ra CI=BK
Gọi O là giao điểm của BC và HI
mà BC là đường trung trực của HI
nên O là trung điểm của HI
Xét ΔHIK có
O là trung điểm của HI(cmt)
M là trung điểm của HK(H và K đối xứng nhau qua M)
Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)
⇒OM//IK(Định lí 2 về đường trung bình của tam giác)
hay IK//BC
Xét tứ giác BIKC có IK//BC(cmt)
nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)
Hình thang BIKC(IK//BC) có IC=BK(cmt)
nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
a) Xét tứ giác BHCK có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: BHCK là hình bình hành(cmt)
nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)
Ta có: BK//CH(cmt)
nên BK//CF
Ta có: BK//CF(cmt)
CF⊥AB(gt)
Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)
Ta có: CK//BH(cmt)
nên CK//BE
Ta có: CK//BE(cmt)
BE⊥AC(gt)
Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)
c) Vì H và I đối xứng nhau qua BC
nên BC là đường trung trực của HI
⇔C nằm trên đường trung trực của HI
hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: BHCK là hình bình hành(cmt)
nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)
Từ (1) và (2) suy ra CI=BK
Gọi O là giao điểm của BC và HI
mà BC là đường trung trực của HI
nên O là trung điểm của HI
Xét ΔHIK có
O là trung điểm của HI(cmt)
M là trung điểm của HK(H và K đối xứng nhau qua M)
Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)
⇒OM//IK(Định lí 2 về đường trung bình của tam giác)
hay IK//BC
Xét tứ giác BIKC có IK//BC(cmt)
nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)
Hình thang BIKC(IK//BC) có IC=BK(cmt)
nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
Vì FI vuông góc với AC, BE vuông góc với AC nên FI song song với EQ
suy ra\(\frac{AI}{IE}=\frac{AF}{FB}\)(1)
Vì FJ vuông góc với AD, BC vuông góc với AD nên JI song song với BC
suy ra \(\frac{AF}{FB}=\frac{AJ}{JD}\)(2)
Từ (1) và (2) suy ra \(\frac{AI}{IE}=\frac{AJ}{JD}\)suy ra IJ song song với ED (a)
VÌ IF vuông góc với AC, FQ vuông góc với AC nên IF song song với FQ
suy ra\(\frac{IE}{EC}=\frac{FH}{HC}\) (3)
VÌ FK vuông góc với BC,AD vuông góc với BC nên FK song song với AD
suy ra \(\frac{KD}{KC}=\frac{KH}{HC}\)(4)
Từ (3) và (4) suy ra \(\frac{IE}{EC}=\frac{KD}{KC}\)suy ra IK song song với ED (b)
Vì FK song song với AD(cmt) nên\(\frac{AF}{FB}=\frac{KD}{BK}\)(5)
Vì FQ vuông góc với EB,AC vuông góc với EB nên FQ song song với EI
suy ra \(\frac{AF}{FB}=\frac{QE}{BQ}\)(6)
Từ (5) và (6) suy ra \(\frac{BQ}{QE}=\frac{BK}{KD}\) suy ra QK song song với ED (c)
Từ (a), (b) và (c) suy ra I,J,Q,K thẳng hàng
a , b tự lm nha ( dễ mà )
c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BC
⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI
Và MM là trung điểm của HKHK
⇒DM⇒DM là đường trung bình ΔHIKΔHIK
⇒DM∥IK⇒DM∥IK
⇒BC∥IK⇒BC∥IK
⇒BCKI⇒BCKI là hình thang
ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến
⇒ΔCHI⇒ΔCHI cân đỉnh CC
⇒CI=CH⇒CI=CH (*)
Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)
Từ (*) và (**) suy ra CI=BKCI=BK
Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK
Suy ra BCIKBCIK là hình thang cân.
Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)
⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC
...
:< chép luôn hình cho nó thanh niên :)))