K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AEHF có

\(\widehat{HEA}+\widehat{HFA}=180^0\)

nên AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét tứ giác AEDB có 

\(\widehat{AEB}=\widehat{ADB}\left(=90^0\right)\)

nên AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

20 tháng 5 2017

Theo công thức Heron ta có :

\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) \(\)    (\(p\)=\(\frac{a+b+c}{2}=\frac{P}{2}\))

=>\(S^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right).\)

=>\(16S^2=\left(2.p\right)\left[2\left(p-a\right)\right]\left[2\left(p-b\right)\right]\left[2\left(p-c\right)\right].\)

<=>\(16S^2=P.\left(P-2a\right)\left(P-2b\right)\left(P-2c\right).\left(đpcm\right)\)

+) cách chứng minh định lý Heron

Gọi a,b,c lần lượt là 3 cạnh của tam giác và A,B,C lần lượt là các góc đối diện của các cạnh .theo hệ quả định lí cô-si ta có

\(\cos\left(C\right)=\frac{a^2+b^2-c^2}{2ab}=>\sin\left(C\right)=\sqrt{1-\cos^2}=\frac{\sqrt{4a^2b^2-\left(a^2+b^2-c^2\right)^2}}{2ab}\)

ta có diện tích tam giác ABC

\(S=\frac{ab\sin\left(C\right)}{2}=\frac{1}{4}\sqrt{4a^2b^2\left(a^2+b^2-c^2\right)^2}\)

\(=\frac{1}{4}\left(2ab-\left(a^2+b^2-c^2\right)\right)\left(2ab+\left(a^2+b^2-c^2\right)\right)\)

\(=\frac{1}{4}\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)

\(=\frac{1}{4}\left(c-\left(a-b\right)\right)\left(c+\left(a-b\right)\right)\left(\left(a+b\right)-c\right)\left(\left(a+b\right)+c\right)\)

\(=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

18 tháng 1 2021

Hình như câu b chưa rõ lắm, tam giác ABC cân tại đâu?

18 tháng 1 2021

đề chỉ ghi tam giác cân thôi bạn

1 tháng 12 2017

a) Ta có \(AM=AC-MC=AC-MB=b-d\)

Xét tam giác vuông ABM, theo định lý Pi-ta-go ta có:

\(c^2+\left(b-d\right)^2=d^2\Leftrightarrow c^2+b^2-2bd+d^2=d^2\)

\(\Leftrightarrow c^2+b^2-2bd=0\)

Mà tam giác ABC vuông tại A nên \(b^2+c^2=a^2\)

\(\Rightarrow a^2=2bd\Rightarrow4bc=2bd\Rightarrow d=2c\left(đpcm\right)\)

b) Xét tam giác vuông ABM có \(BM=2BA\Rightarrow\widehat{ABM}=60^o\Rightarrow\widehat{AMB}=36^o\)

Xét tam giác cân MBC có \(\widehat{AMB}\) là góc ngoài tại đỉnh cân nên \(\widehat{AMB}=2\widehat{MBC}=2\widehat{MCB}\)

\(\Rightarrow\widehat{MCB}=\widehat{MBC}=\frac{30^o}{2}=15^o\)

Vậy nên \(\widehat{ABC}=\widehat{ABM}+\widehat{MBC}=60^o+15^o=75^o\)

\(\widehat{ACB}=\widehat{MCB}=15^o\)

12 tháng 6 2017

Heron !! Thay S theo heron Biến đôie biểu thức <=> b^+c^2 = a^2 => Q.E.D

14 tháng 6 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ đường cao CH của tam giác ABC. Ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Chứng minh tương tự ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9