Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tư giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
Xét tứ giác CDHE có
góc CDH+góc CEH=180 độ
=>CDHE là tứ giác nội tiếp
b: CDHE là tứ giác nội tiếp
=>gó BED=góc FCB
góc FEH=góc BAD
mà góc FCB=góc BAD
nên góc BED=góc FEB
=>EB là phân giác của góc FED
c: góc IEO=góc IEH+góc OEH
=góc IHE+góc OBE
=góc BHD+góc CBH=90 độ
=>IE là tiếp tuyến của (O)
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: góc AHG=góc BHD=90 độ-góc HBD=góc ACB
góc AGH=1/2*sđ cung AB=góc ACB
=>góc AHG=góc AGH
=>ΔAGH cân tại A
Hướng dẫn:
Ta chứng minh: ^CBJ + ^JKC = 180o
Có: ^CBJ + ^JKC = \(\frac{1}{2}\).^CBA + ^JKD + ^DKC = (a)
+) \(\Delta\)BFD ~ \(\Delta\)ECD (1) => \(\Delta\)JFD ~ \(\Delta\)KDC => \(\Delta\)DKJ ~ \(\Delta\)DCF (2)
Từ (2) => ^JKD = ^FCD
K là giao điểm 3 đường phân giác của \(\Delta\)DEC => DKC = 90o + ^DEC:2
(a) = \(\frac{\widehat{CBA}}{2}+\widehat{FCB}+90^o+\frac{\widehat{DEC}}{2}\)
(1) => ^DEC = ^DBF = ^CBA
(a) = \(\frac{\widehat{CBA}}{2}+\widehat{FCB}+90^o+\frac{\widehat{CBA}}{2}\)
= \(\widehat{CBA}+\widehat{FCB}+90^o=180^o\)
=> BJKC nội tiếp
( Làm tắt bạn tự hiểu nhé )
Gọi O là giao diểm của MK và IQ
+) Chứng minh: IMQK là hình chữ nhật:
IM là đường trung bình tam giác AHB
=> IM // HB (1)
QK là đường trung bình tam giác CBH
=> QK// HB (2)
Từ (1) và (2) => IM// QK
=> IMQK là hình bình hành
Ta có: \(\hept{\begin{cases}KQ\perp AC\left(KQ//BE;BE\perp AC\right)\\MQ//AC\end{cases}}\Rightarrow KQ\perp MQ\)
=> IMQK là hình chữ nhật
=> IQ cắt MK tại trung điểm mỗi đường và IQ=MK
Mà O là giao điểm của IQ và MK
=> OI=OM=OK=OQ (3)
CMTT: MNKL là hình chữ nhật
=> OM=ON=OK=OL (4)
+) Chứng minh tam giác vuông có O là trung điểm cạnh huyền
Tam giác MDK vuông tại D có O là trung điểm MK ( do ... là hình chữ nhật í )
=> OM=OK=OD
CMTT vào 2 tam giác IFQ vuông và tam giác ENL vuông
=> OI=OF=OQ (5) ; OE=ON=OL (6)
Từ (3) , (4) , (5) và (6) => 9 điểm I,K,L,D,E,F,M,N,Q cùng thuộc 1 đường tròn
Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)(Đpcm)
a: Xét tứ giác AEHF có góc AEH+góc AFH=180 độ
nên AEHF là tứ giác nội tiếp
Tâm K là trung điểm của AH
b: Xéttứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp
a) Dễ thấy \(\widehat{ADC}=\widehat{AFC}=90^o\) \(\Rightarrow\) Tứ giác ACDF nội tiếp đường tròn nhận AC làm đường kính \(\Rightarrow\) Tâm của đường tròn ngoại tiếp tứ giác ACDF chính là trung điểm của đoạn AC.
b) Áp dụng định lý Menelaus cho tam giác HBC với cát tuyến DFK, ta có \(\dfrac{KH}{KB}.\dfrac{DB}{DC}.\dfrac{FC}{FH}=1\) \(\Rightarrow\dfrac{KH}{KB}=\dfrac{DC}{DB}.\dfrac{FH}{FC}\) (1)
Áp dụng định lý Ceva cho tam giác HBC với các đường đồng quy CE, DH, BF và \(D\in BC,E\in HB,F\in HC\), ta có \(\dfrac{DC}{DB}.\dfrac{EB}{EH}.\dfrac{FH}{FC}=1\) \(\Rightarrow\dfrac{EH}{EB}=\dfrac{DC}{DB}.\dfrac{FH}{FC}\) (2)
Từ (1) và (2) suy ra \(\dfrac{KH}{KB}=\dfrac{EH}{EB}\) \(\Rightarrow\) đpcm
Nếu bạn chưa thấy câu trả lời thì vào trang cá nhân của mình xem nhé.