K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

BE là đường cao

CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AD vuông góc với BC

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)

Do đó: ΔHFB\(\sim\)ΔHEC

Suy ra: HF/HE=HB/HC

hay \(HF\cdot HC=HB\cdot HE\left(1\right)\)

Xét ΔAHF vuông tại F và ΔCHD vuông tại D có 

\(\widehat{AHF}=\widehat{CHD}\)

Do đó: ΔAHF\(\sim\)ΔCHD

SUy ra: HA/HC=HF/HD

hay \(HF\cdot HC=HA\cdot HD\left(2\right)\)

Từ (1) và (2) suy ra \(HF\cdot HC=HA\cdot HD=HE\cdot HB\)

c: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc BAE chung

Do đó:ΔAEB\(\sim\)ΔAFC

Suy ra: AE/AF=AB/AC

hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

góc FAE chung

Do đó: ΔAEF\(\sim\)ΔABC

2 tháng 5 2022

Helps me !!!

 

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc A chung

=>ΔABE đồng dạng với ΔACF

b: ΔABE đồng dạng với ΔACF

=>AE/AF=AB/AC

=>AE/AB=AF/AC và AE*AC=AB*AF

Xét ΔAEF và ΔABC có

AE/AB=AF/AC
góc FAE chung

=>ΔAEF đồng dạng với ΔABC

 

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF*HC=HB*HE

10 tháng 5 2017

undefined