Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: MN II BC => HK\(⊥\)MN
Theo Talet có: \(\frac{HK}{AH}=\frac{GD}{AD}=\frac{1}{3}\)
và: \(\frac{MG}{BD}=\frac{AG}{AD}=\frac{2}{3}\)(*)
\(\frac{GN}{DC}=\frac{AG}{AD}=\frac{2}{3}\)(**)
tỪ (*) và (**) => \(\frac{MN}{BC}=\frac{2}{3}\)
Vậy diện tích tam giác HMN=\(S_{HMN}=\frac{2}{9}.S_{ABC}=\frac{2.36}{9}=8\)
a, Xét tứ giác AHCE có: AH // EC (gt)
AE // HC (gt)
=> AHCE là hình bình hành (dhnb)
b, Xét hình bình hành AHCE có: \(\widehat{AHC}=90^o\) \(\left(AH\perp BC\right)\)
=> AHCE là hình chữ nhật (dhnb)
c, Ta có: \(S_{AHCE}=2S_{AHC}\)
Mà \(S_{AHC}=\frac{1}{2}AK.HC\)
\(\Rightarrow S_{AHCE}=2.\frac{1}{2}AK.HC=AK.HC\)
Mà \(S_{ABC}=S_{AHCE}\)
\(\Rightarrow S_{ABC}=AK.HC\)
Lại có: \(S_{ABC}=\frac{1}{2}AK.BC\)
\(\Rightarrow AK.HC=\frac{1}{2}AK.BC\)
\(\Rightarrow HC=\frac{1}{2}BC\)
=> H là trung điểm BC