K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Cho hình bình hành ABCD,P là điểm bất kì trên AB.M,N làn lượt là trung điểm của AD,BC.Gọi các điểm đối xứng của P qua MN lần lượt là E,F.Chứng minh:a.E,F,C,D thẳng hàngb.EF có độ dài không đổi2.Cho tam giác ABC,vẽ D đối xứng với a qua B,E đối xứng với B qua C,F đối xứng với C qua A.G là giao điểm của trung tuyến AM của tam giác ABC với trung tuyến DN của tam giác DEF.I,K lần lượt là trung...
Đọc tiếp

1.Cho hình bình hành ABCD,P là điểm bất kì trên AB.M,N làn lượt là trung điểm của AD,BC.Gọi các điểm đối xứng của P qua MN lần lượt là E,F.Chứng minh:

a.E,F,C,D thẳng hàng

b.EF có độ dài không đổi

2.Cho tam giác ABC,vẽ D đối xứng với a qua B,E đối xứng với B qua C,F đối xứng với C qua A.G là giao điểm của trung tuyến AM của tam giác ABC với trung tuyến DN của tam giác DEF.I,K lần lượt là trung điểm của GA,GD.Chứng minh:
a.Tứ giác MNIK là hình bình hành

b.Trọng tâm tam giác ABC và tam giác DÈ trùng nhau

3.Tính độ dài đường trung tuyến AM của tam giác ABC biết góc A=120 độ;AB=6 cm;AC=8 cm

4.tam giác ABC,đường cao BH;CK cắt nhau tại E.Qua B kẻ Bx vuông góc với AB.Qua C kẻ Cy vuông góc với AC,Bx cắt Cy tại D

a.BDCE là hình gì?Vì sao?

b.Gọi M là trung điểm của ED.chứng minh E,M,D thẳng hàng

c.Tam giác ABC thỏa mãn điều kiện gì để A,E,M thẳng hàng

CÁC BẠN GIÚP MÌNH VỚI NHAA,MÌNH CẢM ƠN NHIỀU NHIỀU!!!

1
5 tháng 1 2017

Ui ,Khó thật!

13 tháng 4 2020

Gọi H, K lần lượt là trung điểm của BC, C'A'

\(\Delta A'BC'\)cân tại B có \(\widehat{A'BC'}=120^0\)\(\Rightarrow\widehat{BC'A'}=\widehat{BA'C'}=30^0\)

\(\Rightarrow\Delta BKC'\)là nửa tam giác đều

\(\Rightarrow BK=\frac{1}{2}BC'\)(1)

\(AH\perp BC\)(do \(\Delta ABC\)đều) nên \(\Delta ABH\)là nửa tam giác đều

\(\Rightarrow BH=\frac{1}{2}AB\)(2)

Từ (1) và (2) suy ra \(\frac{BK}{BC'}=\frac{BH}{AB}\)

Ta có: \(\widehat{KBH}=60^0-\widehat{ABK}=\widehat{ABC'}\)

 \(\Delta KBH\)và \(\Delta C'BA\)có: \(\frac{BK}{BC'}=\frac{BH}{BA}\left(cmt\right)\)\(\widehat{KBH}=\widehat{C'BA}\left(cmt\right)\)

 \(\Rightarrow\Delta KBH~\Delta C'BA\left(c-g-c\right)\)

\(\Rightarrow\frac{KH}{C'A}=\frac{1}{2}\Rightarrow\frac{KH}{AB'}=\frac{1}{2}\)và \(\widehat{C'AB}=\widehat{KHB}\)

Ta có: \(\widehat{HAB'}=\widehat{B'AC'}-\left(30^0+\widehat{C'AB}\right)\)

\(=\left(\widehat{B'AC'}-30^0\right)-\widehat{C'AB}=90^0-\widehat{KHB}=\widehat{KHA}\)

Mà \(\widehat{HAB'}\)và \(\widehat{KHA}\)ở vị trí so le trong nên KH // AB'

\(\Rightarrow\frac{KG}{GB'}=\frac{GH}{GA}=\frac{KH}{AB'}=\frac{1}{2}\)

hay \(\frac{B'G}{KB'}=\frac{GA}{HA}=\frac{2}{3}\)

Điều này chứng tỏ \(\Delta ABC\)và \(\Delta A'B'C'\)có cùng trọng tâm (đpcm)

13 tháng 4 2020

dễ quá

13 tháng 7 2020

a) Gọi D, E, F lần lượt là chân các đường phân giác của tam giác ABC lần lượt hạ từ A, B, C.
Gọi T là trung điểm của BC. Do AD là đường phân giác của tam giác ABC nên \(\frac{BD}{AB}=\frac{CD}{AC}\Rightarrow\frac{BD}{5}=\frac{CD}{7}=\frac{BD+CD}{5+7}=\frac{6}{12}=\frac{1}{2}\)\(\Rightarrow\hept{\begin{cases}BD=2,5\\CD=3,5\end{cases}}\)

\(\Delta ABD\) có BI là đường phân giác nên \(\frac{AI}{ID}=\frac{BA}{BD}=\frac{5}{2,5}=2\)

Do G là trọng tâm của tam giác ABC nên \(\frac{AG}{GT}=2\)

Từ các kết quả trên ta được \(\frac{AI}{ID}=\frac{AG}{GT}=2\)suy ra IG // DT hay IG // BC (Theo định lý Thales đảo)

b) Ta có \(\Delta BMI=\Delta BDI\)vì \(BD=BM=2,5;\widehat{DBI}=\widehat{MBI}\); BI là cạnh chung

Suy ra \(\widehat{BMI}=\widehat{BDI}\)

Chứng minh tương tự \(\Delta CNI=\Delta CDI\Rightarrow\widehat{ CNI}=\widehat{CDI}\)

Mà \(\widehat{BDI}+\widehat{CDI}=180^0\)nên \(\widehat{BMI}+\widehat{CNI}=180^0\)suy ra\(\widehat{AMI}+\widehat{ANI}=180^0\)

Vậy tứ giác AMIN nội tiếp hay bốn điểm A, M, I, N cùng nằm trên 1 đường tròn (đpcm)