Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét \(\Delta ANP\) và \(\Delta CNM\) có
\(AN=CN\)
\(\widehat{ANP}=\widehat{CNM}\)
\(NP=NM\)
\(\Rightarrow\Delta ANP=\Delta CNM\)
\(\Rightarrow\widehat{NAP}=\widehat{NCM}\)
\(\Rightarrow\)AP // MC
\(\Rightarrow AP=MC\)
a, C/m CP // AB
Xét ΔANM và ΔCNP. Ta có:
NM = NP (gt)
∠N1 = ∠N2 (đối đỉnh)
NA = NC (gt)
⇒ ΔANM = ΔCNP (c.g.c)
Nên: ∠A = ∠C1 (hai góc tương ứng)
Mà ∠A và ∠C1 ở vị trí so le trong
⇒ CP // AB
b, C/m MB = CP
Ta có: MA = CP (vì ΔANM = ΔCNP)
Mà MA = MB (gt)
⇒ MB = CP
c, C/m BC = 2MN
Nối BP. Xét ΔMBP và ΔCPB. Ta có:
BM = CP (gt)
∠B1 = ∠P1 (so le trong)
BP cạnh chung
⇒ ΔMBP = ΔCPB (c.g.c)
Nên: MP = BC (hai cạnh tương ứng)
Mà: MP = 2MN (vì N là trung điểm của MP)
⇒ BC = 2MN
Chỉ còn vài tiếng nữa là mình nộp bài rồi, mong các bạn dành ra ít thời gian để giúp đỡ mình. Mình sẽ tích đúng cho các bạn, mình cảm ơn trước!!!!
Câu a nếu bạn đã học đường trung bình trong ∆ thì có thể vận dụng được ngay.
Xét ∆ABC có:
M: Trung điểm AB
N: Trung điểm AC
=> MN: đường trung bình của ∆ABC
=> MN=1/2BC (ĐL Đường TB trong ∆)
Mà NP=MN => MP=BC
b) Xét ∆AMN và ∆CPN có:
Góc ANM = Góc CNP ( 2 góc đối đỉnh)
MN=NP
AN=NC
=> ∆ AMN = ∆ CPN (cgc)
=> góc MAN = góc PCN ( 2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AM// CP <=> AB //CP
c) Theo mình nghĩ câu c phải là CM MB =CP
Ta có ∆AMN=∆CNP(cmt)
=> AM =CP ( 2 cạnh tương ứng)
Mà AM=MB => MB=CP
a/ CM: tam giác NAM=tam giác NCP (c.g.c)
=>Góc MAN = Góc NCP
Mà 2 góc nằm ở vị trí so le trong
=>đpcm
b/Vì tam giác NAM= tam giác NCP(cmt)
=>AM=CP (1)
Mà AM=BM(gt) (2)
Từ (1) và (2) suy raBM=CP
c/ Nối B với P
CM Tam giác BMP= tam giác PCB(c.g.c)
=>BC=MP(cạnh tương ứng) (3)
Mà 2MN=MP (4)
Từ (3) và (4) suy ra đpcm