Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét △ABM và △△ DBM , ta có :
AB=BD(gt)
ˆABM^ == ˆDBM^ ( vì BM là tia phân giác của ˆABC^ )
BM là chung
⇒ △△ ABM= △△ DBM(c−g−c)
b)Ta có : ˆBAM^ == ˆBDM (( vì △ ABM= △ DBM)
Mà ˆBAM^ =90o(=90) ( vì △ ABC vuông tại A)
⇒⇒ ˆBDM=90o
⇒MD⇒ ⊥⊥ BC
c) Vì MD⊥⊥ BC(cmt)
⇒ ˆMDC^ =90o=90
⇒ △ MDC vuông tại D
⇒MC>MD(ch>cgv)
Mà MD=MA( vì △ABM=△ DBM)
⇒MC>MA
a: Xét ΔABM và ΔDBM có
BA=BD
\(\widehat{ABM}=\widehat{DBM}\)
BM chung
Do đó: ΔABM=ΔDBM
b: Ta có: ΔBAM=ΔBDM
nên \(\widehat{BAM}=\widehat{BDM}=90^0\)
hay MD\(\perp\)BC
c: Ta có: MA=MD
mà MD<MC
nên MA<MC
a) xét tam giác ABH và tam giác ACH có
Góc AHB =Góc AHC =90 độ
AB =AC ( do tam giác abc cân)
Góc B = góc C (do tam giác abc cân)
=> tam giác ABH = tam giác ACH ( cạnh huyền, góc nhọn)
=>HB= HC (hai cạnh tương ứng bằng nhau)
b) Xét tam giác MAK và tam giác MCK có
AK=KH( gì)
Góc AKB = GÓC CKB=90 độ
MK chung
=>tam giác MAK = tam giác MCK( c. g. c)
=> MA=CM( hai cạnh tương ứng)
c) từ tam giác mak = tam giác MCK ( câu b)
=>góc MAK = góc C (..)
TA CÓ tam giác abc cân ở A =>góc B = góc C
=>góc Abc = góc Mak
d) cậu xem lại đề phần này đi nha mik thấy nó sai cái j đó
*lâu r ms lm hình:DD*
+,Có `BK` là p/g `=>hat(B_1)=hat(B_2)`
Có `BM=BC` và `AM=NC` (\(gt\))
`=>BM-AM=BC-NC`
hay `BA=BN`
Xét `Delta ABK` và `Delta NBK` có :
`{:(BK-chung),(hat(B_1)=hat(B_2)(cmt)),(BA=BN(cmt)):}}`
`=>Delta ABK = Delta NBK(c.g.c)`
`=>{(hat(A_1)=hat(N_1)(tương.ứng)(1)),(AK=NK(tương.ứng)):}`
+, Từ `(1)` ; `hat(A_1)+hat(A_2)=180^0` (kề bù) ; `hat(N_1)+hat(N_2)=180^0` (kề bù)
`=>hat(A_2)=hat(N_2)`
Xét `Delta AKM` và `Delta NKC` có :
`{:(AK=NK(cmt)),(hat(A_2)=hat(N_2)(cmt)),(AM=NC(Gt)):}}`
`=>Delta AKM=Delta NKC (c.g.c)`
`=>hat(K_1)=hat(K_2)` ( 2 góc tương ứng )
`=>hat(K_1)+hat(AKN)=hat(K_2)+hat(AKN)`
hay `hat(MKN)=hat(CKA)`
mà `hat(CKA)=180^0` (`K in AC` )
Nên `hat(MKN)=180^0`
`=>M ; K ; N` thẳng hàng
Hình :
a: Xét ΔBAM và ΔBHM có
BA=BH
góc ABM=góc HBM
BM chung
=>ΔBAM=ΔBHM
=>góc BAM=góc BHM=90 độ
MC-MA=MC-MH<HC
a: \(\widehat{ACB}=90^0-30^0=60^0\)
d: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABNC là hình chữ nhật
Suy ra: AN=BC
Xét ΔABM có : BA=BM
=> ΔABM cân tại B
=> \(\widehat{BAM}=\widehat{B}=30^o\)
=> \(\widehat{MAC}=90^o-30^o=60^o\)
\(\widehat{C}=90^o-\widehat{B}=60^o\)
ΔAMC có 2 góc \(60^o\)
=> ΔAMC là tam giác đều
Sai đề bạn, nếu tam giác ABC có điểm M trên BC thỏa mãn BM=MC=MA là tam giác vuông nha