Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)
mà \(BP=\dfrac{BC}{2}\)
nên MN//BP và MN=BP
Xét tứ giác BMNP có
MN//BP
MN=BP
Do đó: BMNP là hình bình hành
Do đó: MN là đường trung bình của ΔBAC
BAC hay bc thế ạ
1.
AB=CD (cặp cạnh đối hbh)
AM=AB/2 và CN=CD/2
=> AM=CN (1)
AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)
Từ (1) và (2) => AMCN là hbh(Tứ giác có một cặp cạnh đối // và = nhau thì tứ giác đó là hbh)
2.
a. M là trung điểm AB; N là trung điểm AC => MN là đường trung bình của tgABC
=> MN//BC => MN//BP và MN=BP=BC/2
=> BMNP là hbh (lý do như bài 1)
b. Ta có BMNP là hbh và ^B=90 => BMNP là HCN
\(BC=\sqrt{AC^2-AB^2}=\sqrt{5^2-3^2}=4cm.\)
Từ kq câu a => MN=BC/2=4/2=2 cm
C/m tương tự câu a có NP là đường trung bình của tg ABC => NP=AB/2=3/2=1,5 cm
Chu vi BMNP là
(2+1,5)x2=7 cm
Xét ΔBCA có
N là trung điểm của AC
P là trung điểm của BC
Do đó: NP là đường trung bình của ΔBCA
Suy ra: NP//MB và NP=MB
hay BMNP là hình bình hành
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay MN//BP và \(MN=\dfrac{1}{2}BC=BP\)
Vậy BMNP là hbh
b, Vì BMNP là hbh mà I là trung điểm MP nên I là trung điểm BN
Vậy B,I,N thẳng hàng
a) Ta có: N, P lần lượt là trung điểm của CA; CB
=> NP là đường trung bình của tam giác CAB với đáy AB
=> NP // = \(\frac{1}{2}\)AB (1)
mà M là trung điểm AB => AM = MB = \(\frac{1}{2}\)AB (2)
Từ (1); (2) => NP // = MB
=> BMNP là hình bình hành.
b. Từ (1) ; (2) => AMPN là hình bình hành
mà ^NAM = ^CAB = 1v
=> AMMPN là hình chữ nhật
( chú ý 1v là 1 vuông = góc 90 độ )
a) Ta có: N, P lần lượt là trung điểm của CA; CB
=> NP là đường trung bình của tam giác CAB với đáy AB
=> NP // = 1212AB (1)
mà M là trung điểm AB => AM = MB = 1212AB (2)
Từ (1); (2) => NP // = MB
=> BMNP là hình bình hành.
b. Từ (1) ; (2) => AMPN là hình bình hành
mà hbh AMPN có 1 góc vg nên => AMPN là hình chữ nhật
Vì E,D là trung điểm AB,AC nên ED là đtb tg ABC
Do đó ED//BC nên BEDC là hình thang
Vì ED là đtb tg ABC nên \(ED=\dfrac{1}{2}BC\)
Mà \(BM=\dfrac{1}{2}BC\) (M là trung điểm BC) nên \(ED=BM\)
Mà ED//BM (ED//BC) nên BEDM là hbh
a: Xét ΔBAC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
b: Xét ΔABC có
M là trung điểm của AB
K là trung điểm của BC
Do đó: MK là đường trung bình của ΔBAC
Suy ra: MK//AC và \(MK=\dfrac{AC}{2}\)
mà N\(\in\)AC và \(AN=\dfrac{AC}{2}\)
nên AN//MK và AN=MK
Xét tứ giác AMKN có
AN//MK
AN=MK
Do đó: AMKN là hình bình hành
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BF và DE=BF
hay BDEF là hình bình hành
xét tg ABC
AM=MB,AN=NC=>MN là đường trung bình tg ABC=>MN//BP
lại có BP=PC,AN=NC=>NP là đương trung bình tg ABC=>NP//BM
xét tứ giác BMNP
MN//BP,NP//BM=> BMNP là hình bình hành