Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay BMNC là hình thang
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà BN=CM
nên BMNC là hình thang cân
a) Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ N là trung điểm của AC (gt).
\(\Rightarrow\) MN là đường trung bình tam giác ABC (Định nghĩa đường trung bình tam giác).
\(\Rightarrow\) MN // BC (Tính chất đường trung bình tam giác).
Xét tứ giác BMNC có: MN // BC (cmt).
\(\Rightarrow\) Tứ giác BMNC là hình thang (dhnb).
b) Xét tứ giác tứ giác AECF có:
+ N là là trung điểm của AC (gt).
+ N là trung điểm của EF (F là điểm đối xứng của E qua N).
\(\Rightarrow\) Tứ giác AECF là hình bình hành (dhnb).
Mà \(\widehat{AEC}=90^o\) \(\left(AE\perp BC\right).\)
\(\Rightarrow\) Tứ giác AECF là hình chữ nhật (dhnb).
c) Xét tam giác AEC có:
+ N là trung điểm AC (gt).
+ ON // EC (MN // BC).
\(\Rightarrow\) O là trung điểm AE (Định lý đường thẳng đi qua trung điểm 1 cạnh và song song với cạnh thứ 2).
Tứ giác AECF là hình chữ nhật (cmt). \(\Rightarrow\) AC = EF (Tính chất hình chữ nhật).
Mà AI = AC (gt).
\(\Rightarrow\) EF = AI.
Xét tam giác AIC có: AI = AC (gt). \(\Rightarrow\) Tam giác AIC cân tại A.
Mà AE là đường cao \(\left(AE\perp BC\right)\).
\(\Rightarrow\) AE là đường trung tuyến (Tính chất các đường trong tam giác).
\(\Rightarrow\) E là trung điểm IC.
Tứ giác AFEC là hình chữ nhật (cmt). \(\Rightarrow\) AF = EC (Tính chất hình chữ nhật).
Mà IE = EC (E là trung điểm IC).
\(\Rightarrow\) AF = IE.
Xét tứ giác AFEI có:
+ AF = IE (cmt).
+ EF = AI (cmt).
\(\Rightarrow\) Tứ giác AFEI là hình bình hành (dhnb).
\(\Rightarrow\) AE và IF cắt nhau tại trung đi mỗi đường (Tính chất hình chữ nhật).
Mà O là trung điểm AE (cmt).
\(\Rightarrow\) O là trung điểm IF.
\(\Rightarrow\) O; I; F thẳng hàng (đpcm).
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
hay BMNC là hình thang