Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔECM có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔABM=ΔECM
b: ΔABM=ΔECM
=>AB=EC và góc ABM=góc ECM
=>AB//EC
c: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
nên ABEC là hình bình hành
=>AC//BE
vẽ hình ; bạn tự vẽ nha
a) Xét tam giác MAB và tam giác MEC
có AM =ME
BM=MC
góc AMB=gócBME
vạy tam giác MAB=tam giác MEC.(c.g.c)
b) vì tam giác AMC=tam giác MEC
=> góc EAC= góc EAC
=>AC//BE
c) Tam giác AMB=tam giác CME=>gócABC = gócBCE
=>Tam giác IMB =tam giác CMK(c.g.c)
=>góc IMB= góc CMK
T/C BMI+IMC=180
=>góc CMK +IMC=180
=>IMK=180
Vậy I,M,K thẳng hàng
a) △ABM và △ECM có:
\(MB=MC\\ \widehat{AMB}=\widehat{CME}\\ AM=ME\)
\(\Rightarrow\text{△ABM = △ECM (c.g.c)}\)
b) \(\text{△ABM = △ECM}\\ \Rightarrow\widehat{ABM}=\widehat{ECM}\)
Mà 2 góc ở vị trí so le trong
\(\Rightarrow\) AB // CE (dấu hiệu nhận biết)
c) \(\text{△ACM và △EBM có:}\\ AM=EM\\ \widehat{AMC}=\widehat{BME}\\ CM=BM\\ \Rightarrow\text{△ACM = △EBM (c.g.c)}\\ \Rightarrow\widehat{CAM}=\widehat{BEM}\\ \text{△AIM và △EKM có:}\\ AI=EK\\ \widehat{IAM}=\widehat{KEM}\\ AM=EM\\ \Rightarrow\text{△AIM = △EKM (c.g.c)}\\ \Rightarrow MI=MK\)
a) Xét ΔABM và ΔECM có
MA=ME(gt)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔABM=ΔECM(c-g-c)
Hình tự vẽ nha !
a/ Xét ΔABM và ΔECM có:
MB=MC (Mlà trung điểm của BC)
góc AMB = góc EMC ( 2 góc đối đỉnh)
MA=ME(giả thiết)
Do đó ΔABM=ΔECM(c.g.c)
b/ vì ΔABM=ΔECM nên góc BAM= góc MEC (2 góc tương ứng)
mà góc BAM và góc MEC là 2 góc ở vị trí so le trong ( khi đoạn thẳng AE cắt AB và CE ở A và E) nên theo dấu hiệu nhận biết 2 đường thẳng song song => AB // CE
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMEC
b: Ta có: ΔMAB=ΔMEC
=>AB=EC
Ta có: ΔMAB=ΔMEC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
c: Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
d: Xét ΔIAM và ΔKEM có
IA=KE
\(\widehat{IAM}=\widehat{KEM}\)
AM=EM
Do đó: ΔIAM=ΔKEM
=>\(\widehat{IMA}=\widehat{KME}\)
mà \(\widehat{IMA}+\widehat{IME}=180^0\)(hai góc kề bù)
nên \(\widehat{KME}+\widehat{IME}=180^0\)
=>I,M,K thẳng hàng
b: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AC//BE
a) Xét ∆ABM và ∆CME ta có :
BM = MC ( M là trung điểm BC)
AM = ME
AMB = CME ( đối đỉnh)
=> ∆ABM = ∆CME(c.g.c)
b) Xét ∆AMC và ∆BME ta có :
AM = ME
BM = MC
AMC = BME ( đối đỉnh)
=> ∆AMC = ∆BME(c.g.c)
=> ACM = MBE
Mà 2 góc này ở vị trí so le trong
=> AC//BE
c) Vì ∆AMB = ∆CME
=> ABC = BCK
Xét ∆IMB và ∆CMK ta có :
BM = MC
BI = CK
ABC = BCE (cmt)
=> ∆IMB = ∆CMK (c.g.c)
=> IMB = CMK
Ta có :
BMI + IMC = 180° ( kề bù)
Mà IMB = CMK
=> CMK + IMC = 180°
=> IMK = 180°
=> IMK là góc bẹt
=> I , M , K thẳng hàng
Xét ABM và EMC có : AM = ME BM = CM Góc AMB = góc CME ( đối đỉnh ) => tam giac ABM = Tam giác EMC Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong => AB // CE c Xét tam giác AIB và tam gics CIK có : AI = IC BI = Ik Góc AIB = góc CIK ( đối đỉnh ) => tam giác AIB = tam giác CIK