Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

A B C M E

a) CMR AC // BE

xét tam giacs AMC và tam giác EMB

có AM = ME (gt)

     BM = MC (M trung điểm BC)

     \(\widehat{AMC}=\widehat{EMB}\left(dd\right)\)

=> tam giác AMC = tam giác EMB (cgc)

=> \(\widehat{MBE}=\widehat{MCB}\)mà chúng ở vị trí so le trong => AC//BE

6 tháng 3 2020

b) bạn tự thêm điểm I và K vào hình vẽ nhé, mình lười :))

ta có I thuộc AC, K thuộc BE nên

IC = AC - AI và BK = BE - KE

mà AC = BE (cmt), AI = KE (gt)

=> IC = BK 

xét tam giác IMC và tam giác KMB

có: BK = IC (cmt)

BM = MC (cmt)

góc MBK = góc ICM (AC//BE)

=> tam giác IMC = tam giác KMB (cgc) 

=> góc IMC = góc KMB

khi đó góc IMK = 180 độ

I, M, K thẳng hàng

a) Xét ∆ABM và ∆CME ta có : 

BM = MC ( M là trung điểm BC)

AM = ME 

AMB = CME ( đối đỉnh) 

=> ∆ABM = ∆CME(c.g.c)

b) Xét ∆AMC và ∆BME ta có : 

AM = ME 

BM = MC 

AMC = BME ( đối đỉnh) 

=> ∆AMC = ∆BME(c.g.c)

=> ACM = MBE 

Mà 2 góc này ở vị trí so le trong 

=> AC//BE 

c) Vì ∆AMB = ∆CME 

=> ABC = BCK 

Xét ∆IMB và ∆CMK ta có :

BM = MC 

BI = CK 

ABC = BCE (cmt)

=> ∆IMB = ∆CMK (c.g.c)

=> IMB = CMK 

Ta có : 

BMI + IMC = 180° ( kề bù) 

Mà IMB = CMK 

=> CMK + IMC = 180° 

=> IMK = 180° 

=> IMK là góc bẹt 

=> I , M , K thẳng hàng 

4 tháng 12 2015

Do AC=BE(gt)

AMC=BME(đối đỉnh)

BM=MC(M là trung điểm BC)

Suy ra tam giác AMC=tam giác BME(c-g-c)

ACM=MBE và hai góc này ở vị trí so le trong nên AC // BE

4 tháng 12 2015

a/ Xét tam giác AMC và tam giác EMB có

AM=ME(gt)

góc AMC=góc EMB(đối đỉnh)

BM=MC( M là trung điểm của BC) 

Vậy tam giác AMC = tam giác EMB(c-g-c)