K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

vecto AI=1/2*vecto AM

=1/4(vecto AB+vecto AC)

=1/4(vecto AC+vecto CB+vecto AC)

=1/4(-2vecto CA+vecto CB)

=-1/2*vecto CA+1/4*vecto CB

=>m=-1/2; n=1/4

29 tháng 12 2023

Xét ΔBAD có BM là đường trung tuyến

nên \(\overrightarrow{BM}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{5}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{6}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)\)

\(=\dfrac{5}{6}\left(\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\right)\)

\(\overrightarrow{BN}=\overrightarrow{BA}+\overrightarrow{AN}\)

\(=\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{BC}\)

=>\(\overrightarrow{BM}=\dfrac{5}{6}\cdot\overrightarrow{BN}\)

=>B,M,N thẳng hàng

a: vecto MN=vecto MC+vecto CA+vecto AN

=vecto CA+4 vecto BC+3/4 vecto AB

=vecto CA+4(vecto BA+vecto AC)+3/4vecto AB

=vecto CA-4vecto AB-4vecto CA+3/4vecto AB

=-3 vecto CA-13/4vecto AB

=-13/4vecto AB+3 vecto AC

=>-13/4 vecto AB=vecto MN-3 vecto AC

=>vecto AB=-4/13 vecto MN+12/13 vecto AC

b: vecto AE=vecto AN+vecto NE

=3/4vecto AB+1/2vecto NM

=3/4vecto AB-1/2 vecto MN

=3/4*vecto AB-1/2(-13/4vecto AB+3vecto AC)

=3/4*vecto AB+13/8vecto AB-3/2vecto AC

=19/8vecto AB-3/2vecto AC

31 tháng 12 2023

Xét ΔBAD có BI là đường trung tuyến

nên \(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)

=>\(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{5}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{1}{3}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)=\dfrac{1}{6}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)=\dfrac{5}{6}\left(\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\right)\)

\(\overrightarrow{BM}=\overrightarrow{BA}+\overrightarrow{AM}\)

\(=\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\)

=>\(\overrightarrow{BI}=\dfrac{5}{6}\cdot\overrightarrow{BM}\)

=>B,I,M thẳng hàng

25 tháng 12 2023

Cách 1: Dùng định lý Menelaus đảo:

Từ đề bài, ta có \(\dfrac{BD}{BC}=\dfrac{2}{3}\)\(\dfrac{MC}{MA}=\dfrac{3}{2}\)\(\dfrac{IA}{ID}=1\)

\(\Rightarrow\dfrac{BD}{BC}.\dfrac{MC}{MA}.\dfrac{IA}{ID}=1\)

Theo định lý Menelaus đảo, suy ra B, I, M thẳng hàng.

Cách 2: Dùng vector

 Ta có \(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)

\(=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}.\dfrac{2}{3}\overrightarrow{BC}\)

\(=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\) 

\(=\dfrac{1}{6}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

Lại có \(\overrightarrow{BM}=\dfrac{MC}{AC}\overrightarrow{BA}+\dfrac{MA}{AC}\overrightarrow{BC}\)

\(=\dfrac{3}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{BC}\)

\(=\dfrac{1}{5}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

\(=\dfrac{6}{5}.\dfrac{1}{6}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

\(=\dfrac{6}{5}\overrightarrow{BI}\)

Vậy \(\overrightarrow{BM}=\dfrac{6}{5}\overrightarrow{BI}\), suy ra B, I, M thẳng hàng.