Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Kẻ BD vuông góc với AB(D\(\in\)AM), lấy điểm E trên AM sao cho MD=ME
Xét tứ giác BECD có
M là trung điểm của BC
M là trung điểm của ED
Do đó: BECD là hình bình hành
Suy ra: CE//BD
hay CE\(\perp\)AB
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
1: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔABM=ΔCDM
Xét \(\Delta\) ABM và \(\Delta\) DCM có:
+ MA = MD (gt).
+ MB = MC (M là trung điểm của BC).
+ \(\widehat{AMB}=\widehat{DMC}\) (2 góc đối đỉnh).
\(\Rightarrow\) \(\Delta\) ABM = \(\Delta\) DCM (c - g - c).
\(\Rightarrow\) AB = CD (2 cạnh tương ứng).
vì AM là trung tuyến của tam giác vuông ABC (M là trung điểm của cạnh BC)
=>AM=1/2*BC=BM=CM
xét tam giácBMA và tam giác DMC có :
AM=MD(gt)
góc BMA=góc DMC (đ đ)
BM=MC(gt)
=> 2 tam giác đó bằng nhau(c-g-c)
=>ACB=ADC(2GTU)
AB=DC(2ctu)
ta có BM+CM =BC, AM+MD=AD
mà BM=CM, AM=MD
và AM=BM=CM
=> BC=AD
xét tam giác BAC và tam giác DCA có :
BA=DC (cmt)
AC là cạnh chung
BC=AD (cmt)
=> 2 tam giác đó bằng nhau (c--c-c)=>BAC=DCA=90 độ ( 2gtu)=>DC vuông góc vs AC
A B C E D N M K H
CM : a)Xét t/giác ABC và t/giác ADE
có AB = AD (gt)
góc EAD = góc BAC (đối đỉnh)
AC = AE (gt)
=> t/giác ABC = t/giác ADE (c.g.c)
=> ED = BC (hai cạnh tương ứng) (Đpcm)
=> góc E = góc C (hai góc tương ứng)
Mà góc E và góc C ở vị trí so le trong
=> ED // BC (Đpcm)
b) Ta có: t/giác ABC = t/giác ADE (cmt)
=> góc D = góc B (hai góc tương ứng) (1)
Mà góc EDM = góc MDA = góc D/2 (2)
góc ABN = góc NBC = góc B/2 (3)
Từ (1); (2); (3) => góc EDM = góc NBC
Xét t/giác EMD và t/giác CNB
có ED = BC (cmt)
góc EDM = góc NBC (cmt)
góc E = góc C (cmt)
=> t/giác EMD = t/giác CNB (g.c.g) (Đpcm)
c) Ta có: t/giác EMD = t/giác CNB (cmt)
=> MD = BN (hai cạnh tương ứng)
Mà MK = KD = MD/2
BH = HN = BN/2
=> KD = BH
Từ (1); (2); (3) => góc MDA = góc ABN
Xét t/giác ADK và t/giác ABN
có AD = AB (gt)
góc MDA = góc ABN (cmt)
KD = BH (cmt)
=> t/giác ADK = t/giác ABN (c.g.c)
=> góc KAD = góc BAH (hai góc tương ứng)
Do B,A,D là ba điểm thẳng hàng nên góc BAM + góc MAK + góc KAD = 1800
hay góc BAM + góc MAK + góc BAH = 1800
=> ba điểm K, A,H thẳng hàng (Đpcm)