Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABM và ΔDEN có
AB=DE
\(\widehat{B}=\widehat{E}\)
BM=EN
Do đó: ΔABM=ΔDEN
Suy ra: AM=DN
Ta có:
ΔABC=ΔDEF(gt)ΔABC=ΔDEF(gt)
⇒⎧⎪⎨⎪⎩AB=DEˆABC=ˆABM=ˆDEF=ˆDENBC=EF⇒{AB=DEABC^=ABM^=DEF^=DEN^BC=EF
Ta lại có:
⎧⎪ ⎪⎨⎪ ⎪⎩BM=MC=12BC(gt)EN=NF=12EF(gt){BM=MC=12BC(gt)EN=NF=12EF(gt)
⇒BM=MC=EN=NF⇒BM=MC=EN=NF
Xét ΔABMΔABM và ΔDENΔDEN có:
AB=DE(ΔABC=ΔDEF)AB=DE(ΔABC=ΔDEF)
ˆABM=ˆDEN(cmt)ABM^=DEN^(cmt)
BM=EN(cmt)BM=EN(cmt)
Do đó ΔABM=ΔDEN(c.g.c)ΔABM=ΔDEN(c.g.c)
⇒AM=DN (Hai cạnh tương ứng)
sr bạn mình ko bk vẽ hình trên đây
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
a)
Vì tam giác ABC cân tại A (gt)
suy ra: góc ABC = góc ACB
hay góc EBC = góc DCB
Xét tam giác EBC và tam giác DCB có
góc BEC = góc CDB ( =90)
góc EBC = góc DCB (CMT)
BC chung
Suy ra tam giác EBC = tam giác DCB (ch-gn)
suy ra BE=CD (cctu)
b) Xét tg ABC có:
+ BD là đườg cao (BD vuông góc AC)
+ CE là đg cao (CE vuông góc AB)
Mà BD giao CE tại I (gt)
=> I là trực tâm
=> AI là đường cao
Xét tg ABC cân tai A có: AI là đường cao (cmt)
=> AI cũng là đường pg góc BAC ( Tc tg cân)
AM là đường trung tuyến ứng với cạnh huyền
suy ra tam giác ABC là tam giác vuông tại A