Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N P
a) Xét ΔANM và ΔCNP có:
AN=CN(gt)
\(\widehat{ANM}=\widehat{CNP}\left(đđ\right)\)
NM=NP(gt)
=> ΔANM=ΔCNP(c.g.c)
=> AM=PC
\(\widehat{NAM}=\widehat{NCP}\) . Mà hai góc này ở vị trí sole trong
=> AB//CP
CÓ:\(AM=\frac{1}{2}AB\left(gt\right)\) . mà AM=CP(cmt)
=> \(CP=\frac{AB}{2}\)
b) CÓ: \(CP=\frac{AB}{2}\left(cmt\right)\)
Mà: \(BM=\frac{AB}{2}\left(gt\right)\)
=> \(CP=BM\)
Xét ΔBMC và ΔPCM có:
BM=CP(cmt)
\(\widehat{BMC}=\widehat{PCM}\) ( sole trong do CP//AB)
MC:cạnh chung
=> ΔBMC=ΔPCM(c.g.c)
=> \(\widehat{BCM}=\widehat{PMC}\) . Mà hai góc này ở vị trí sole trong
=> MN//BC
Xét ΔABC có: NA=NC(gt) ; MA=MB(gt)
=>MN là đường trung bình
=> \(MN=\frac{BC}{2}\)
a)ta có:M là trung điểm AB(gt)
N là trung điểm AC(gt)
nên MN là đường trung bình của tam giác ABC
suy ra MN// với cạnh đáy
suy ra MN//BC
b)ta có MN là đường trung bình của tam giác ABC(cmt)
nên MN=1/2 cạnh đáy(tính chất đường trung bình )
suy ra MN=1/2 BC=BC/2
a)Ta có M là TĐ của AB(gt)
N là TĐ của AC(gt)
=> MN là đường TB của tam giác ABC
=>MN // BC (Định lý đường TB trong tam giác)
b) Ta có MN là đường TB của tam giác ABC(cm a)
=>MN=BC/2 (Định lý đường TB trong tam giác)
Chúng tôi không biết phải làm thế nào.Các bạn làm ơn giúp mình với.Mình cảm ơn các bạn nhiều
Rất Sorry bạn nha.Mik mới nghĩ ra câu a,b thôi,còn câu c thì mik cần thời gian:(
Bạn tự chứng minh bổ đề đường trung bình nha.
a.
Do N là trung điểm của DE;I là trung điểm của BE nên NI là đường trung bình của tam giác BDE nên:
\(IN=\frac{1}{2}BD\left(1\right)\)
Mặt khác:M là trung điểm của BC,I là trung điểm của BE nên MI là đường trung bình của tam giác BEC nên:
\(IM=\frac{1}{2}EC\left(2\right)\)
Mà \(BD=EC\) nên từ (1);(2) suy ra \(IN=MI\Rightarrow\Delta IMN\) cân tại I.
b.
Do IN là đường trung bình nên \(IN//AB\Rightarrow\widehat{APQ}=\widehat{INM}\left(3\right)\)
Do IM là đường trung bình nên \(IM//EC\Rightarrow\widehat{AQP}=\widehat{IMN}\left(4\right)\)
Từ (3);(4) suy ra \(\widehat{APQ}=\widehat{AQP}\Rightarrow\Delta APQ\) cân tại A.
A B C M N G
Kéo dài đoạn MN Sao cho NG = NM.
Xét CNG Và ANM Có
\(\widehat{ANM}\) = \(\widehat{CNG}\)
AN = NC
MN = NG
=> CNG = ANM (c.g.c)
=> \(\widehat{AMN}\) = \(\widehat{CGN}\) (2 góc tương ứng)
CG = AM (2 cạnh tương ứng)
Mà AM = BM
=> CG = BM
Ta có \(\widehat{AMN}\) = \(\widehat{CGN}\) (So le trong)
=> CG // AM
=> \(\widehat{GCM}\) = \(\widehat{BMC}\) (Cặp góc so le trong)
Xét GCM Và BMC
\(\widehat{GCM}\) = \(\widehat{BMC}\)
CG = BM
Chung CM
=> GCM = BMC (c.g.c)
=> GM = CB (2 cạnh tương ứng)
=> \(\widehat{GMC}\) = \(\widehat{MCB}\) (2 góc tương ứng)
Mà GN = NM = 1/2GM
=> NM = 1/2CB
Lại có \(\widehat{GMC}\) = \(\widehat{MCB}\) (so le trong)
=> NM//CB
!!!! CHÚC BẠN HỌC TỐT - THỢ SĂN TOÁN HỌC