Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M E G F
GE // AM
\(\Rightarrow\frac{GE}{AM}=\frac{BE}{BM}\) ( Định lý Ta-lét )
Tương tự \(\frac{FE}{AM}=\frac{CE}{CM}=\frac{CE}{BM}\) ( Vì CM = CM )
Cộng các vế hai đẳng thức trên ta có : \(\frac{GE}{AM}+\frac{FE}{AM}=\frac{BE}{BM}+\frac{CE}{BM}\)
\(\Rightarrow\frac{FE+EG}{AM}=\frac{BC}{BM}=2\)
\(\Rightarrow FE+EG=2AM\)
Vậy ...
Tự vẽ hình nhá!
Xét tam giác EFC có EF//AM (gt)
=> \(\dfrac{EF}{AM}=\dfrac{EC}{CM}\) ( hệ quả định lí Ta-let) (1)
Xét tam giác ABM có: EG//AM ( gt)
=> \(\dfrac{EG}{AM}=\dfrac{BE}{BM}\) ( hệ quả định lý Ta-let)
Mà BM = CM ( M là trung điểm của BC)
Nên \(\dfrac{EG}{AM}=\dfrac{BE}{CM}\) (2)
Cộng vế theo vế (1) và (2)
Ta được: \(\dfrac{EF}{AM}+\dfrac{EG}{AM}=\dfrac{EC}{CM}+\dfrac{BE}{CM}\)
hay \(\dfrac{EF+EG}{AM}=\dfrac{BC}{CM}=2\) ( vì BE + EC = BC; BC = 2CM)
Suy ra EF + EG = 2AM ( đpcm)
1) hk vẽ hình đc nha
kẻ CN//AB (N thuộc AD), gọi I là giao điểm của AD và MB
tg BIA đồng dạng với tg BAM; tg BIA động dạng với tg ACN -> tg BAM đồng dạng với tg ACN BA/AC=AM/CN=1 -> CN/AC=AM/AB=1/2 hay CN/AB=AM/AC=1/2 (do AB=Ac) Ta có CN//AB -> CD/BD=CN/AB=1/2
k đúng cho mình nha
2)tg ABM đồng dạng với tg GEB ->GE/AM=BE/BM (1) tg AMC đồng dạng với tg FEC ->FE/AM=CE/CM=CE/BM (2) (1)(2) -> GE/AM+FE/AM=(BE+CE)/BM=2 1/AM(GE+FE)=2 -> GE+FE=2AM
nhớ k nhan
Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé
Xét tam giác BAC có: BM=CM(M là trung điểm của BC)
ME//AC(Mx//AC)
=>AE=BE(hay E là trung điểm của AB)
Xét tam giác CBA có: BM=CM(M là trung điểm của BC)
MF//AB(My//AB)
=>AF=CF(hay F là trung điểm của AC)
Xét tam giác ABC có: AE=BE
AF=CF
=>EF là đường trung bình của tam giác ABC
b, Xét tứ giác AEMF có: ME//AF(Mx//AC)
MF//AE(My//AB)
=>AEMF là hình bình hành
Ta có: AE=BE; AF=CF
mà AB=AC(tam giác ABC cân tại A)
=>AE=BE=AF=CF
Xét hình bình hành AEMF có:AF=AE
=>AEMF là hình thoi
=> AM vuông góc với EF và AM đi qua trung điểm của EF
=>AM là đường trung trực của EF
a/Có ME, MF là phân giác nên có:
\(\frac{AM}{BM}=\frac{AE}{EB}\left(1\right),\frac{AM}{MC}=\frac{AF}{FC}\left(2\right)\)
BM=MC nên (1)=(2) suy ra EF//BC(*)
b/Từ (*)\(\Rightarrow\frac{EI}{BM}=\frac{IF}{MC}\)( hệ quả Thales)
Mà BM=MC nên EI=IF
c/MC=1/2BC=1/2.12=6cm
Ta có: \(\frac{S_{AMF}}{S_{MFC}}=\frac{AM}{MC}=\frac{7}{6}\)
d/Trên tia đối FK lấy N sao cho AN//BM
Ta có: \(\frac{KB}{KA}=\frac{BM}{AN}=\frac{MC}{AN}\)(3)
Lại có: \(\frac{EB}{EA}=\frac{FC}{FA}\left(4\right)\)
Vì AN//MC nên (3)=(4)\(\Rightarrow\frac{KB}{KA}=\frac{EB}{EA}\RightarrowĐPCM\)
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD