Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẽ Bx // AC cắt AM tại Q.
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{MA}{AQ}=\dfrac{MC}{BC}\\\dfrac{MC}{MB}=\dfrac{AC}{BQ}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}MA.BC=MC.AQ\\MC.BQ=MB.AC\end{matrix}\right.\)
\(\Rightarrow MB.AC+MC.AB=MC.BQ+MC.AB=MC\left(AB+BQ\right)>MC.AQ=MA.BC\)
bai 1/
pt <=> x+\(\sqrt{3-x^2}\)=x\(\sqrt{3-x^2}\)<=> x=\(\sqrt{3-x^2}\)(x-1) (*)
nhan thay x=1 ko la n0 cua pt nen chia ca 2 ve cua (*) cho x-1 dc
\(\frac{x}{x-1}\)=\(\sqrt{3-x^2}\)
binh phg 2 ve va thu goc ta duoc pt x^4 - 2x^3 - x^2 + 6x - 3 = 0
<=> (x^2-3x+3)(x^2+x-1)=0
ban tu giai tiep
a: Gọi O là trung điểm của MC
=>O là tâm đường tròn đường kính MC
Xét (O) có
ΔCNM nội tiếp
CM là đường kính
Do đó: ΔCNM vuông tại N
=>MN\(\perp\)NC tại N
=>MN\(\perp\)CB tại N
Xét tứ giác ABNM có \(\widehat{MNB}+\widehat{MAB}=90^0+90^0=180^0\)
nên ABNM là tứ giác nội tiếp
=>A,B,N,M cùng thuộc một đường tròn
b: ABNM là tứ giác nội tiếp
=>\(\widehat{ANM}=\widehat{ABM}\)
=>\(\widehat{ANM}=\widehat{ABI}\)(1)
Xét tứ giác CIAB có \(\widehat{CIB}=\widehat{CAB}=90^0\)
nên CIAB là tứ giác nội tiếp
=>\(\widehat{ABI}=\widehat{ACI}\)
mà \(\widehat{ACI}=\widehat{MCI}=\widehat{MNI}\left(=\dfrac{1}{2}sđ\stackrel\frown{MI}\right)\)
nên \(\widehat{ABI}=\widehat{MNI}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MNI}=\widehat{MNA}\)
=>NM là phân giác của góc ANI
a,
Kẻ BE,CF vuông góc với AM.
Ta có:
MA.BC = MA.(BP+CP) ≥ MA.(BE+CF) = 2 SABM + 2 SCAM
Tuong tu:
MB.CA ≥ 2SBCM + 2 SABM
MC.AB ≥ 2SCAM + 2 SBCM
Suy ra:
MA.BC + MB.CA + MC.AB ≥ 2 ( 2 SABM + 2SBCM + 2SCAM) = 4SABC
dpcm.
Dấu = xảy ra khi M là trực tâm.