K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

Kẽ Bx // AC cắt AM tại Q.

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{MA}{AQ}=\dfrac{MC}{BC}\\\dfrac{MC}{MB}=\dfrac{AC}{BQ}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}MA.BC=MC.AQ\\MC.BQ=MB.AC\end{matrix}\right.\)

\(\Rightarrow MB.AC+MC.AB=MC.BQ+MC.AB=MC\left(AB+BQ\right)>MC.AQ=MA.BC\)

16 tháng 11 2017

sp làm đúng lúc con cần luôn :V Tks Sp

19 tháng 5 2016

bai 1/ 

pt <=> x+\(\sqrt{3-x^2}\)=x\(\sqrt{3-x^2}\)<=> x=\(\sqrt{3-x^2}\)(x-1) (*)

nhan thay x=1 ko la n0 cua pt nen chia ca 2 ve cua (*) cho x-1 dc

\(\frac{x}{x-1}\)=\(\sqrt{3-x^2}\)

binh phg 2 ve va thu goc ta duoc pt x^4 - 2x^3 - x^2 + 6x - 3 = 0

<=> (x^2-3x+3)(x^2+x-1)=0

ban tu giai tiep

a: Gọi O là trung điểm của MC

=>O là tâm đường tròn đường kính MC

Xét (O) có

ΔCNM nội tiếp

CM là đường kính

Do đó: ΔCNM vuông tại N

=>MN\(\perp\)NC tại N

=>MN\(\perp\)CB tại N

Xét tứ giác ABNM có \(\widehat{MNB}+\widehat{MAB}=90^0+90^0=180^0\)

nên ABNM là tứ giác nội tiếp

=>A,B,N,M cùng thuộc một đường tròn

b: ABNM là tứ giác nội tiếp

=>\(\widehat{ANM}=\widehat{ABM}\)

=>\(\widehat{ANM}=\widehat{ABI}\)(1)

Xét tứ giác CIAB có \(\widehat{CIB}=\widehat{CAB}=90^0\)

nên CIAB là tứ giác nội tiếp

=>\(\widehat{ABI}=\widehat{ACI}\)

mà \(\widehat{ACI}=\widehat{MCI}=\widehat{MNI}\left(=\dfrac{1}{2}sđ\stackrel\frown{MI}\right)\)

nên \(\widehat{ABI}=\widehat{MNI}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MNI}=\widehat{MNA}\)

=>NM là phân giác của góc ANI

26 tháng 8 2020

a,
Kẻ BE,CF vuông góc với AM.
Ta có:
MA.BC = MA.(BP+CP) ≥ MA.(BE+CF) = 2 SABM + 2 SCAM
Tuong tu:
MB.CA ≥ 2SBCM + 2 SABM
MC.AB ≥ 2SCAM + 2 SBCM
Suy ra:
MA.BC + MB.CA + MC.AB ≥ 2 ( 2 SABM + 2SBCM + 2SCAM) = 4SABC
dpcm.
Dấu = xảy ra khi M là trực tâm.