\(\frac{S_{ABM}}{S_{ACM}}=\frac{BM}{CM}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

Bai 1

Bo de :  \(\Delta ABC\) trung tuyen AD 

\(\Rightarrow S_{ADB}=S_{ADC}\)

cai nay ban tu chung minh nha

Ap dung bo de va bai nay => \(S_{MNPQ}=S_{MQP}+S_{MNP}=\frac{1}{3}S_{MDC}+\frac{1}{3}S_{ABP}\)

ta phai chung minh \(S_{MDC}+S_{ABP}=S_{ABCD}\)

That vay co \(S_{AMP}=S_{AMD},S_{MBP}=S_{MBC}\)

=> \(S_{ABP}+S_{MDC}=S_{ADM}+S_{MDC}+S_{MBC}=S_{ABCD}\)

=> dpcm

16 tháng 12 2019

Hình như sai ở dòng thứ 2 từ dưới lên trên ấy

11 tháng 8 2015

A B C M H

kẻ AH là đường cao \(\Delta\)ABC

\(\Rightarrow\)AH là đường cao \(\Delta\)ABM và\(\Delta\)ACM

\(\Rightarrow\)\(S\Delta ABM=\frac{AH\cdot BM}{2};S\Delta ACM=\frac{AH\cdot CM}{2}\)

Mà CM = BM(AM là đương trung tuyến)

\(\Rightarrow\)\(S\Delta ABM=S\Delta ACM\Rightarrow\frac{S\Delta ABM}{S\Delta ACM}=1\)