Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O F H E D I K A' C' B' M N
a) Do BHCK là hình bình hành nên BH // KC \(\Rightarrow KC\perp AC\Rightarrow\widehat{ACK}=90^o\)
KB // CF \(\Rightarrow\widehat{ABK}=90^o\)
Hai tam giác vuông ABK và ACK chung cạnh huyền AK nên A, B, C, K cùng thuộc đường tròn đường kính AK. Vậy K thuộc đường tròn (O).
b) Do BHCK là hình bình hành nên I là trung điểm HK.
AK là đường kính nên \(\widehat{AA'K}=90^o\Rightarrow\) DI // A'K
Vậy DI là đường trung bình tam giác HA'K. Suy ra HD = DA'
Tương tự : HF = FC' ; HE = EB'
Ta có : \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=\frac{AD+DA'}{AD}+\frac{BE+EE'}{BE}+\frac{CF+FC'}{CF}\)
\(=1+\frac{DA'}{AD}+1+\frac{EB'}{BE}+1+\frac{FC'}{CF}=3+\left(\frac{DA'}{AD}+\frac{EB'}{BE}+\frac{FC'}{CF}\right)\)
\(=3+\left(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\right)=3+\left(\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}\right)\)
\(=3+\frac{S_{ABC}}{S_{ABC}}=3+1=4\)
Vậy nên \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=4\)
c) Ta thấy \(\widehat{AKC}=\widehat{ABC}=\widehat{AHF}\)
Vậy nên \(\Delta AFH\sim\Delta ACK\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{AF}{AC}\) (1)
AFH và AEH là các tam giác vuông chung cạnh huyền AH nên AFHE là tứ giác nội tiếp.
Vậy thì \(\widehat{AFM}=\widehat{AHE}=\widehat{ACN}\)
Lại có \(\Delta AFH\sim\Delta ACK\Rightarrow\widehat{FAM}=\widehat{CAN}\)
Nên \(\Delta AFM\sim\Delta ACN\left(g-g\right)\Rightarrow\frac{AF}{AC}=\frac{AM}{AN}\) (2)
Từ (1) và (2) suy ra \(\frac{AH}{AK}=\frac{AM}{AN}\Rightarrow\frac{AH}{AM}=\frac{AK}{AN}\Rightarrow\) MN // HK (Định lý Talet đảo)
1) Vì một tam giác vuông luôn nội tiếp đường tròn đường kính = cạnh huyền
\(\Rightarrow\)Tam giác vuông BHF và tam giác BDH nội tiếp đường tròn đường kính BH
\(\Leftrightarrow\)4 điểm B,F,H,D cùng nằm trên đường tròn \(\Rightarrow\)Tứ giác BFHD nội tiếp đường tròn đường kính BH
a,TỨ GIÁC ĐẤY NT CM ĐC R NHA BN
b,bn cm thêm tứ giác HECD nt nứa xong suy ra góc HAE = HCE (1)
từ tứ giác ý a nt suy ra góc MDH =FBE (2)
TỨ giác EFBC nt suy ra góc FBE =FCE (3)
TỪ 1 2 VÀ 3 SUY RA DC LÀ PHÂN GIÁc
Mừng quá. Xong hết rồi. Hơn nửa tiếng bây giờ cũng được đền đáp =))
a) MB = MC (=MA) (giao điểm 2 tiếp tuyến cách đều tiếp điểm)
b) MA = MB = MC => T/g ABC vuông tại A => ^A = 90
T/g OAB cân tại O, có OM là đ/phân giác nên OM cũng là đ cao hay ^ANM = 90
Tương tự, ^APM = 90
=> đpcm
c) MO'/MO = O'C/BM (CMO' ~ BOM) = O'C/CM = CP/MP (CMO' ~ PMC) = MN/MP (PMC = NBM góc vuông - cạnh huyền - góc nhọn so le trong)
=> đpcm
d) Trong t/g vuông OMO' có MA là đường cao, OM^2 = OA.OO' <=> OM = 20 => BM = 12 (Pytago) => BC = 24
e) Dùng ta lét tìm ra OE, EC, còn OC tìm theo pytago trong t/g vuông OBC
f) ABKC là hình chữ nhật => AK cắt BC tại trung điểm M => đpcm
D E F H M B C A K G
Nối E với F và nối K với F
Ta có
E và F cùng nhìn BC dưới 1 góc \(90^o\) => BCEF là tứ giác nội tiếp
\(\Rightarrow\widehat{BEK}=\widehat{KCF}\) (góc nt cùng chắn cung BF) và
\(\widehat{CFE}=\widehat{CBE}\) (góc nt cùng chắn cung CE) (1)
Xét tg BKE và tg FKC có
\(\widehat{BEK}=\widehat{KCF}\) (cmt)
\(\widehat{EKC}\) chung
\(\Rightarrow\widehat{KBE}=\widehat{KFC}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{KBE}+\widehat{CBE}=\widehat{KFC}+\widehat{CFE}\)
Mà \(\widehat{KBE}+\widehat{CBE}=\widehat{KBC}=180^o\)
\(\Rightarrow\widehat{KFC}+\widehat{CFE}=180^o\)
=> E; F; K thẳng hàng