K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

Xét Δ DBF và Δ FDE, ta có:

∠(BDF) =∠(DFE) (so le trong vì EF // AB)

DF cạnh chung

∠(DFB) =∠(FDE) (so le trong vì DE // BC)

Suy ra: Δ DFB = Δ FDE(g.c.g) ⇒ DB = EF (hai cạnh tương ứng)

Mà AD = DB (gt)

Vậy: AD = EF

5 tháng 8 2022

Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :

a) AD = EF

b)  Tam giác ADE = Tam giác EFC= tam giác DBF
c) BC= 2 lần DE

D với F. Xét ΔBDF và ΔFDE ta có:

ˆBDF=^DFE (so le trong (Vì AB//EF (gt))

DF cạnh chung

ˆDFB=ˆFDE(so le trong (Vì DE//BC (gt))

⇒ΔBDF=ΔFDE (g.c.g)

⇒DB=EF (2 cạnh tương ứng )

Mà DB=DA (D là trung điểm AB)

Suy ra AD=EF

b)Xét ΔADE và ΔEFC ta có:

ˆADE=ˆCFE (=ˆBAC; đồng vị của DE//BC và EF//AB)

AD=EF (cmt)

ˆDAE=ˆFEC(đồng vị của DE//BC)

⇒ΔADE=ΔEFC (g.c.g)

c)Vì ΔADE=ΔEFC (cmt)

Suy ra AE=EC (2 cạnh tương ứng )

HT

28 tháng 12 2015

CHTT nha Nguyễn Đào Hà Nhi

a: Xét tứ giác BDEF có 

DE//BF

BD//EF

Do đó: BDEF là hình bình hành

Suy ra: EF=BD

mà BD=AD

nên EF=AD

b: Xét ΔADF và ΔFEA có 

AD=FE

AF chung 

DF=EA

Do đó: ΔADF=ΔFEA

10 tháng 12 2021

c: Xét ΔABC có 

D là trung điểm của AB

DE//BC

Do đó: E là trung điểm của AC