Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao BD ứng với AC. Do góc A tù \(\Rightarrow\) D nằm ngoài đoạn thẳng AC hay \(CD=AD+AC\) và \(\widehat{DAB}=180^0-120^0=60^0\)
Áp dụng định lý Pitago:
\(AB^2=BD^2+AD^2\) \(\Rightarrow BD^2=AB^2-AD^2\)
Trong tam giác vuông ABD:
\(cos\widehat{BAD}=\dfrac{AD}{AB}\Rightarrow\dfrac{AD}{AB}=cos60^0=\dfrac{1}{2}\Rightarrow AD=\dfrac{1}{2}AB\)
\(\Rightarrow BD^2=AB^2-\left(\dfrac{1}{2}AB^2\right)=\dfrac{3}{4}AB^2\)
Pitago tam giác BCD:
\(BC^2=BD^2+CD^2=\dfrac{3}{4}AB^2+\left(AD+AC\right)^2\)
\(=\dfrac{3}{4}AB^2+\left(\dfrac{1}{2}AB+AC\right)^2\)
\(=\dfrac{3}{4}AB^2+\dfrac{1}{4}AB^2+AB.AC+AC^2\)
\(=AB^2+AB.AC+AC^2\)
Hay \(a^2=b^2+c^2+bc\)
Trong trường hợp góc A vuông thì bài toán trở thành: \(a^2=b^2+c^2\) đúng theo Pitago
Trong trường hợp góc A nhọn:
Kẻ đường cao BH (H thuộc AC) \(\Rightarrow AH=AB.cosA=c.cosA\)
Áp dụng định lý Pitago cho tam giác vuông ABH:
\(BH^2=AB^2-AH^2=c^2-AH^2\)
Áp dụng định lý Pitago cho tam giác vuông BCH:
\(BC^2=BH^2+CH^2\Leftrightarrow a^2=c^2-AH^2+CH^2\)
\(\Leftrightarrow a^2=c^2-AH^2+\left(AC-AH\right)^2=c^2-AH^2+\left(AC^2-2AC.AH+AH^2\right)\)
\(\Leftrightarrow a^2=c^2-AH^2+b^2-2b.AH+AH^2\)
\(\Leftrightarrow a^2=b^2+c^2-2b.AH=b^2+c^2-2bc.cosA\) (đpcm)
Trong trường hợp góc A tù làm hoàn toàn tương tự:
\(a^2=BH^2+CH^2=c^2-AH^2+\left(b+AH\right)^2=c^2+b^2+2b.AH\)
\(=b^2+c^2+2b.AB.cos\widehat{BAH}=b^2+c^2-2bc.cosA\)
\(a,\widehat{ABK}=\widehat{ACK}=90^0\) (góc nt chắn nửa đường tròn) nên \(\Delta ABK;\Delta ACK\) vuông tại B và C
\(b,\left\{{}\begin{matrix}CK//BH\left(\perp AC\right)\\BK//CH\left(\perp AB\right)\end{matrix}\right.\Rightarrow BHCK\) là hbh
\(c,\left\{{}\begin{matrix}AO=OM=R\\OM//AH\left(\perp BC\right)\end{matrix}\right.\Rightarrow HM=MK\)
Hình bình hành BHCK có M là trung điểm HK nên cũng là trung điểm BC
\(d,\left\{{}\begin{matrix}AO=OK=R\\HM=MK\left(cm.trên\right)\end{matrix}\right.\Rightarrow OM\) là đtb tam giác AHK
\(\Rightarrow OM=\dfrac{1}{2}AH\)
Bạn tham khảo tại đây:
Câu hỏi của Nguyễn Thị Mỹ Lệ - Toán lớp 9 | Học trực tuyến
Vẽ đường cao BH⊥AC(H∈AC)
Trong △ BHC vuông tại H có BC2=BH2+CH2=BH2+(AC-AH)2=BH2+AC2-2AC.AH+AH2
Trong △ ABH vuông tại B có AH2+BH2=AB2 và AH=AB.cosA hay AH=c.cosA
Suy ra BC2=AC2+AB2-2AC.c.cosA hay a2=b2+c2-2bc.cosA