Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, xét tam giác ABC ta có
AH là đường cao=> góc AHB=90 độ
lại có \(AD\perp BE\)=> góc ADB=90 độ
=>góc AHB= góc ADB=90 độ
mà D,H là 2 đỉnh liên tiếp của tứ giác ADHB
=> tứ giác ADHB nội tiếp đường tròn đường kính AB
lấy điểm O là trung điểm AB=>O là tâm đường tròn ngoại tiếp tứ giác ADHB
b, xét tam giác ABC có BE là phân giác=> góc HBD= góc ABD
lại có tam giác ABC vuông tại A=> góc ABE+ góc AEB=90 độ
hay góc ABD+ góc AED =90 độ(1)
xét tam giác ADE vuông tại E (vì AD\(\perp BE\))
=> góc EAD+góc AED=90 độ(2)
từ(1)(2)=> góc ABD= góc EAD
=>góc EAD= góc HBD(= góc ABD)
c, xét đường tròn(O) => OA=OH=OB=1/2.AB=\(\dfrac{a}{2}\)=R
có OH=OB=>tam giác BOH cân tại O
lại có góc ABC=60 độ hay góc OBH=60 độ=> tam giác OBH đều
=> góc OBH=góc BOH=60 độ=>góc AOH=120 độ( kề bù)
=>góc AOH=số đo cung AOH=120 độ( góc ở tâm)
=> S quạt AOH=\(\dfrac{\pi.R^2.n}{360}=\dfrac{\pi.\left(\dfrac{a}{2}\right)^2.120}{360}=\dfrac{\pi.a^2.30}{360}=\dfrac{\pi.a^2}{12}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình thì bạn tự vẽ nhá
Cách làm: Gọi K là giao điểm của AO và EF (K thuộc EF)
từ A vẽ tiếp tuyến xAy của (O;R)
Ta có: góc yAC= góc ABC (vĩ cùng chắc cung AC) (1)
Tứ giác EFBC nội tiếp (đỉnh E,F cùng nhìn cạnh BC dưới 1 góc cùng bằng 90 độ)
==>góc FEB=góc FCB (2)
Mà :góc FCB+góc FBC=90 độ và góc FEA+góc FEB=90 độ (3)
Từ (2) và (3)
===> góc FEA=góc FBC hay góc FEA=góc ABC (4)
Từ (1) và (4)
==>góc yAC=góc FEA
vì 2 góc này nằm ở vị trí đồng vị nên xy song song với EF (5)
Lại có: AK vuông góc xy (vì xy là tiếp tuyến) (6)
từ (5) và (6)====> AK vuông góc với EF
hay AO vuông góc với EF
Mệt quá, đánh máy mỏi cả tay
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác AEHF có góc AEH+góc AFH=180 độ
nên AEHF là tứ giác nội tiếp
Tâm K là trung điểm của AH
b: Xéttứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp