K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

AB.AC = BC.AH ( hệ thức trong tam giác vuông )
<=> AB²AC² = BC²AH²
<=> AH² = AB²AC² / BC²
<=> AH² = AB²AC² / AB²+AC² ( Tính chất Pytago )
<=> 1/AH² = AB²+AC² / AB²AC²
<=> 1/AH² = 1/AB² + 1/AC²

=> đpcm

19 tháng 8 2023

Để chứng minh rằng √2/AD = 1/AB + 1/AC, ta có thể sử dụng định lý phân giác trong tam giác vuông.

Vì tam giác ABC vuông tại A, nên ta có đường phân giác AD chia góc BAC thành hai góc bằng nhau.

Áp dụng định lý phân giác, ta có:

AB/BD = AC/CD

Từ đó, ta có:

AB/AD + AC/AD = AB/BD + AC/CD

= (AB + AC)/(BD + CD)

= (AB + AC)/BC

= 1/BC (vì tam giác ABC vuông tại A)

Vậy, ta có:

1/AD = 1/AB + 1/AC

√2/AD = √2/AB + √2/AC

Vậy, chứng minh đã được hoàn thành.

Để chứng minh rằng nếu 1/ah^2 + 1/am^2 = 2/ad^2, ta cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.

2/AD^2=(căn 2/AD)^2

=(1/AB+1/AC)^2

\(=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}+2\cdot\dfrac{1}{AB\cdot AC}\)

\(=\dfrac{1}{AH^2}+2\cdot\dfrac{1}{AH\cdot BC}\)

\(=\dfrac{1}{AH^2}+\dfrac{1}{AM^2}\)

11 tháng 8 2020

Sai đề rồi bạn ơi, 2 đường thẳng song song thì làm sao mà cắt nhau được.

25 tháng 10 2021

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

26 tháng 10 2021

Giải dùm em câu d nữa ạ

 

Bài 2: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:

\(AM\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:

\(AN\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)

\(\widehat{ANH}=90^0\)

\(\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=MN

Ta có: \(AM\cdot AB+AN\cdot AC\)

\(=AH^2+AH^2\)

\(=2AH^2=2\cdot MN^2\)

15 tháng 7 2023

câu c,d bài 2

26 tháng 9 2021

Ta có: \(AH^2=HB.HC\Rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\)

Xét tam giác AHB và tam giác CHA có:

\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)

\(\Rightarrow\Delta AHB\sim\Delta CHA\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAH}=\widehat{HCA}\)

Mà \(\widehat{HCA}+\widehat{HAC}=90^0\)(ΔHAC vuông tại H)

\(\Rightarrow\widehat{BAH}+\widehat{HAC}=90^0\)

\(\Rightarrow\widehat{BAC}=90^0\left(đpcm\right)\)