Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C H M K I 1 2 3 1 2
a ) Tứ giác KMIH có \(\widehat{K}=\widehat{I}=\widehat{H}=90^0\Rightarrow\widehat{M_2}=90^0\)
=> Tứ giác KMIH là hình chữ nhật => MK = IH (1)
Ta có : \(\widehat{M_1}+\widehat{M_2}+\widehat{M_3}=180^0\) ( Kề bù ) => \(\widehat{M_1}+\widehat{M_3}=180^0-\widehat{M_2}=180^0-90^0=90^0\)
\(\Rightarrow\widehat{M_1}=90^0-\widehat{M_3}\) (2)
Tam giác IMC vuông tại I => \(\widehat{M_3}+\widehat{C}=90^0\Rightarrow\widehat{C}=90^0-\widehat{M_3}\) (3)
Từ (2) và (3) => \(\widehat{M_1}=\widehat{C}\)
Xét tam giác AKM và tam giác MIC có :
\(\widehat{K}=\widehat{I}=90^0\left(gt\right)\)
AM = MC (gt)
\(\widehat{M_1}=\widehat{C}\left(cmt\right)\)
=> tam giác AKM = tam giác MIC ( CH - GN )
=> IC = MK ( Cạnh tương ứng ) (4)
Từ (1) và (4) => MK = IC = IH (đpcm)
b ) tam giác AHC vuông H
Lại có HM là đường trung tuyến ứng với cạnh huyền là AC
=> \(HM=\frac{1}{2}AC\) ( ĐL đường trung tuyến ứng với cạnh huyền )

c)Xét \(\Delta\)vuông MHC và \(\Delta\)vuông QHB, ta có:
\(\widehat{MCH}=\widehat{QBH}\)( \(\Delta ABC\)cân tại A)
\(HC=HB\)(chứng minh câu a)
\(\Rightarrow\)\(\Delta\)vuông MHC = \(\Delta\)vuông QHB ( ch-gn)
\(\Rightarrow\widehat{MHC}=\widehat{QHB}\)mà \(\widehat{MHC}=\widehat{BHN}\left(dd\right)\Rightarrow\widehat{QHB}=\widehat{BHN}\)
Gọi K là trung điểm NQ
Xét tam giác KHQ và tam giác KHN, ta có:
HQ=HN( cùng bằng HM)
\(\widehat{QHK}=\widehat{KHN}\)(cmt)
\(HK\): cạnh chung
\(\Rightarrow\)tam giác KHQ = tam giác KHN (c.g.c)
\(\Rightarrow\)\(\widehat{K_1}=\widehat{K_2}=90^o\)và QK = KN \(\Rightarrow HB\)là trung trực của NQ hay là BC là trung trực của NQ.

. + vì tam giác ABC là tam giác cân
=> AB=AC ( hai cạnh bên bằng nhau)
Lại có: vì góc AHC bằng 90o (gt) (1)
Mà: AHB+ AHC= 180o ( hai góc kề bù)
Từ (1) và (2) ta suy ra:
AHB= 90o và tam giác AHB là tam giác vuông
a) xét tam giác vuông ABH và tam giác ACH:
AB= AC ( cmt)
Và AHB= AHC= 90o ( cmt)
=> tam giác ABH= tam giác ACH( ch-gv)
Do đó: BH = CH ( hai cạnh tương ứng)
Vậy: H là trung điểm của BC ( đpcm)
( mình chỉ làm được câu a thoii, sorry bạn nhiều nha) 😍😘
CHÚC BẠN HỌC TỐT NHA!
a) Xét \(\Delta AHB\)và \(\Delta AHC\)có :
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(AB=AC\)\((\Delta ABC\)cân \()\)
AH chung
\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)
\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )
\(\Rightarrow\)H là trung điểm của BC
b) Xét \(\Delta MBH\)và \(\Delta NCH\)có :
\(BM=CN\left(gt\right)\)
\(\widehat{B}=\widehat{C}\)\((\Delta ABC\)cân \()\)
\(BH=HC\left(cmt\right)\)
\(\Rightarrow\Delta MBH=\Delta NCH\left(c.g.c\right)\)
\(\Rightarrow\widehat{BMH}=\widehat{CNH}\)( 2 góc tương ứng )
mà \(\widehat{BMH}=90^o\left(gt\right)\)
\(\Rightarrow\widehat{CNH}=90^o\)
\(\Rightarrow HN\perp AC\)

Trả lời:
P/s: Xin lỗi nha!~Chỉ đc mỗi câu a!!!~
a) Theo giả thiết ta có :
AH là đường trung tuyến ⇒BH=HC⇒BH=HC
xét ΔAHBΔAHB và ΔAHCΔAHC có:
AB=ACAB=AC (gt)
AHAH chung
BH=HCBH=HC ( cmt)
⇒ΔAHB=ΔAHC⇒ΔAHB=ΔAHC (c.c.c)
⇒AHBˆ=AHCˆ⇒AHB^=AHC^ (2 góc tương ứng )
~Học tốt!~
b , Ta có : HB +HC= Bc
mà : HB=HC (GT)
=> HB=HC=\(\frac{BC}{2}\)=\(\frac{4}{2}\)= 2
Ta có : \(\Delta ABH\)vuông tại H
=> \(AB^2\)= \(BH^2\)+ \(AH^2\)( Định lí Py-ta-go)
=> 62 = 22 + AH2
=> AH2 = 62 - 22
=> AH2 = 32
=> AH \(\approx\) 5,7 cm

a. △ABC cân tại A, lại có AH là đường cao
=> AH cũng là đường trung tuyến; đường phân giác
=> HB = HC
áp dụng định lý pythagore vào △ABH vuông tại B ta có:
b. xét △ vuông AMH và △ vuông ANH có
AH cạnh chung; góc MAH = góc NAH (câu a)
=> △ AMH = △ANH (ch-gn)
=> HM = HN (2 cạnh tương ứng)
△ AMH = △ANH (câu b) => AM = AN
=> △AMN là △ cân tại A
xét △AMN có: \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\left(1\right)\)
xét △ABC có: \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\left(2\right)\)
TỪ (1) (2) \(=>\widehat{AMN}=\widehat{ABC}\)
mà 2 góc này ở vị trí đồng vị
=> MN // BC
c. ta có MN // BC (câu B) (3)
vì MK ⊥ BC và NP ⊥ BC
=> MK // NP (4)
từ (3) (4) => tứ giác MNPK là HCN
=> MN = KP